• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WAN Ze'en, YIN Weifang, LI Shuchen, JING Shaosen, WNAG Haibo, XU Qinming. Mechanism and experimental tests on reducing adhesive force of clay-metal interface by using electro-osmosis method[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1732-1741. DOI: 10.11779/CJGE20231152
Citation: WAN Ze'en, YIN Weifang, LI Shuchen, JING Shaosen, WNAG Haibo, XU Qinming. Mechanism and experimental tests on reducing adhesive force of clay-metal interface by using electro-osmosis method[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1732-1741. DOI: 10.11779/CJGE20231152

Mechanism and experimental tests on reducing adhesive force of clay-metal interface by using electro-osmosis method

More Information
  • Received Date: November 26, 2023
  • Available Online: March 24, 2024
  • The mechanical construction is widely used in geotechnical engineering, but clay clogging is the major problem that hinders construction. Shield, drilling pile machine and other equipments are prone to mud cake, clogging, poor soil discharge and other phenomena during the construction in clay stratum, which leads to the increased torque of the apparatus, intensified tool wear and reduced construction efficiency. The clay clogging generally occurs at the interface between clay and metal surfaces, and reducing the adhesion force of the clay to the metal surfaces is the key to solving the above issues. A method of using the electro-osmosis technology is introduced to form a water film between the clay and the metal interfaces to reduce the clay adhesion. The tilted-plate tests and electro-osmosis tests are conducted on four types of clay under different voltages and water contents. The experimental results show that the electrodynamic behavior of the clay is influenced by the water content and clay minerals, and needs to meet a certain voltage threshold. The critical sliding voltage threshold of the four clay samples in the experiment is concentrated at 4 V, with slight differences influenced by the water content. After the voltage exceeds the threshold, the detachment time of the soil samples decreases sharply. Increasing the voltage from 9 V to 11 V does not show a significant difference in the detachment time. After the voltage exceeds 7 V, increasing the voltage has few effects on reducing the stickiness of the soil samples, but the energy consumption during the electro-osmosis process increases significantly. When applying the electro-osmosis method in practical engineering, the factors such as energy consumption and formation conditions should be considered comprehensively so as to select the optimal voltage-based electro-osmosis viscosity reduction program and improve the construction efficiency.
  • [1]
    周文波, 吴惠明, 赵峻. 泥岩地层常压刀盘盾构的掘进策略与分析[J]. 现代隧道技术, 2019, 56(4): 8-15. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201904002.htm

    ZHOU Wenbo, WU Huiming, ZHAO Jun. On driving strategy of the shield machine with atmospheric cutterhead in mudstone strata[J]. Modern Tunnelling Technology, 2019, 56(4): 8-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201904002.htm
    [2]
    WAN Z, LI S, YUAN C, et al. Soil conditioning for EPB shield tunneling in silty clay and weathered mudstone[J]. International Journal of Geomechanics, 21(9): 06021020. doi: 10.1061/(ASCE)GM.1943-5622.0002119
    [3]
    方勇, 王凯, 陶力铭, 等. 黏性地层面板式土压平衡盾构刀盘泥饼堵塞试验研究[J]. 岩土工程学报, 2020, 42(9): 1651-1658. doi: 10.11779/CJGE202009009

    FANG Yong, WANG Kai, TAO Liming, et al. Experimental study on clogging of cutterhead for panel earth-pressure-balance shield tunneling in cohesive strata[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1651-1658. (in Chinese) doi: 10.11779/CJGE202009009
    [4]
    REUSS F. Sur un nouvel effet de l'électricité galvanique[J]. Mem Soc Imp Natur Moscou, 1809(2): 327-337. (REUSS F. On a new effect of galvanic electricity[J]. Memoirs of the Imperial Society of Naturalists Moscow, 1809(2): 327-337. (in French))
    [5]
    CASAGRANDE I L. Electro-osmosis in soils[J]. Géotechnique, 1949, 1(1): 159-177.
    [6]
    王柳江, 陈强强, 刘斯宏, 等. 水平排水板真空预压联合电渗处理软黏土模型试验研究[J]. 岩石力学与工程学报, 2020, 39(增刊2): 3516-3525. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2020S2030.htm

    WANG Liujiang, CHEN Qiangqiang, LIU Sihong, et al. Model test on treatment of soft clay under combined vacuum preloading with electro-osmosis using prefabricated horizontal drain[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(S2): 3516-3525. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2020S2030.htm
    [7]
    刘飞禹, 宓炜, 王军, 等. 逐级加载电压对电渗加固吹填土的影响[J]. 岩石力学与工程学报, 2014, 33(12): 2582-2591. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201412026.htm

    LIU Feiyu, MI Wei, WANG Jun, et al. Influence of applying stepped voltage in electroosmotic reinforcement of dredger fill[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(12): 2582-2591. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201412026.htm
    [8]
    崔允亮, 项鹏飞, 王新泉. 含水率与含砂率对软黏土电阻率影响的试验研究[J]. 科学技术与工程, 2018, 18(3): 335-338. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201803055.htm

    CUI Yunliang, XIANG Pengfei, WANG Xinquan. Experimental study on influence of water content and sand content on resistivity of soft clay[J]. Science Technology and Engineering, 2018, 18(3): 335-338. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201803055.htm
    [9]
    项鹏飞, 崔允亮, 王新泉. 含水率与含砂率对软黏土电渗透系数的影响试验研究[J]. 铁道建筑, 2017, 57(12): 75-77. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201712020.htm

    XIANG Pengfei, CUI Yunliang, WANG Xinquan. Experimental study on influence of water content and sand content on electroosmosis coefficient of soft clay[J]. Railway Engineering, 2017, 57(12): 75-77. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201712020.htm
    [10]
    李瑛, 龚晓南. 含盐量对软黏土电渗排水影响的试验研究[J]. 岩土工程学报, 2011, 33(8): 1254-1259. http://cge.nhri.cn/cn/article/id/14160

    LI Ying, GONG Xiaonan. Experimental study on effect of soil salinity on electro-osmotic dewatering in soft clay[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(8): 1254-1259. (in Chinese) http://cge.nhri.cn/cn/article/id/14160
    [11]
    李瑛, 龚晓南. 软黏土地基电渗加固的设计方法研究[J]. 岩土工程学报, 2011, 33(6): 955-959. http://cge.nhri.cn/cn/article/id/14037

    LI Ying, GONG Xiaonan. Design method of electro-osmosis reinforcement for soft clay foundations[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 955-959. (in Chinese) http://cge.nhri.cn/cn/article/id/14037
    [12]
    李瑛, 龚晓南, 郭彪, 等. 电渗软黏土电导率特性及其导电机制研究[J]. 岩石力学与工程学报, 2010, 29(增刊2): 4027-4032. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S2081.htm

    LI Ying, GONG Xiaonan, GUO Biao, et al. Research on conductivity characteristics of soft clay during electro-osmosis and its conductive mechanism[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S2): 4027-4032. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S2081.htm
    [13]
    龚晓南, 焦丹. 间歇通电下软黏土电渗固结性状试验分析[J]. 中南大学学报(自然科学版), 2011, 42(6): 1725-1730. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201106037.htm

    GONG Xiaonan, JIAO Dan. Experimental study on electro-osmotic consolidation of soft clay under intermittent current condition[J]. Journal of Central South University (Science and Technology), 2011, 42(6): 1725-1730. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201106037.htm
    [14]
    王柳江, 刘斯宏, 樊科伟, 等. 真空电渗联合振动碾压加固超软黏土试验研究[J]. 水运工程, 2017(5): 150-156. https://www.cnki.com.cn/Article/CJFDTOTAL-SYGC201705027.htm

    WANG Liujiang, LIU Sihong, FAN Kewei, et al. Experimental study of combined application of vacuum electroosmotic drainage and vibration rolling in ultra-soft clay improvement[J]. Port and Waterway Engineering, 2017(5): 150-156. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYGC201705027.htm
    [15]
    周亚东, 付继宇, 邓安, 等. 真空预压–电渗联合作用下软黏土非线性大变形固结模型[J]. 岩石力学与工程学报, 2019, 38(8): 1677-1685. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201908017.htm

    ZHOU Yadong, FU Jiyu, DANG An, et al. A nonlinear consolidation model of soft clay under the combination of electroomosis and vacuum preloading[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(8): 1677-1685. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201908017.htm
    [16]
    刘飞禹, 张乐, 王军, 等. 外荷载变电压作用下软黏土电渗固结试验研究[J]. 上海大学学报(自然科学版), 2014, 20(2): 228-238. https://www.cnki.com.cn/Article/CJFDTOTAL-SDXZ201402012.htm

    LIU Feiyu, ZHANG Le, WANG Jun, et al. Experimental study on electro-osmosic consolidation of soft clay under preloading and variable voltage[J]. Journal of Shanghai University (Natural Science Edation), 2014, 20(2): 228-238. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDXZ201402012.htm
    [17]
    AZZAM R, OEY W. The utilization of electrokinetics in geotechnical and environmental engineering[J]. Transport in Porous Media, 2001, 42: 293-314.
    [18]
    LAMBE T W. Foundation Engineering[M]. New York: McGraw-Hill Education, 1962.
    [19]
    MICIC S, SHANG J Q, LO K Y. Electrokinetic strengthening of marine clay adjacent to offshore foundations[J]. International Journal of Offshore and Polar Engineering, 2002, 12(1): 64-73.
    [20]
    MOHAMEDELHASSAN E, SHANG J Q. Feasibility assessment of electro-osmotic consolidation on marine sediment[J]. Ground Improvement, 2002, 6(4): 145-152.
    [21]
    VAN BAALEN L R. Reduction of Clay Adherence by Electro-osmosis[D]. Amsterdam: Centre of Engineering Geology in the Netherlands, 1999.
    [22]
    VAN BAALEN L R, ZIMNIK A. VERHOEF P, et al. Applicability of electro-osmosis to reduce clay adherence in a TBM[C]// Proceedings of the International Conference on Geotechnical Geological Engineering. Beijing, 2001.
    [23]
    SPAGNOLI G. Electro-chemo-mechanical Manipulations of Clays Regarding the Clogging During EPB-tunnel Driving[D]. Aachen: RWTH Aachen University, 2011.
    [24]
    HEUSER M, SPAGNOLI G, LEROY P, et al. Electro-osmotic flow in clays and its potential for reducing clogging in mechanical tunnel driving[J]. Bulletin of Engineering Geology and the Environment, 2012, 71: 721-733.
    [25]
    FOUNTAINE E R. Investigations into the mechanism of soil adhesion[J]. Journal of Soil Science, 1954, 5(2): 251-263.
    [26]
    贾贤, 任露泉, 陈秉聪. 土壤对固体材料黏附力的理论分析[J]. 农业工程学报, 1995(4): 5-9. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU199504001.htm

    JIA Xian, REN Luquan, CHEN Bingcong. Theoretical analysis of adhesion force of soil to solid materials[J]. Transactions of the Chinese Society of Agricultural Engineering, 1995(4): 5-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU199504001.htm
    [27]
    方勇, 王宇博, 王凯, 等. 基于界面黏附力盾构堵塞风险评判方法研究[J]. 岩土工程学报, 2023, 45(9): 1813-1821. doi: 10.11779/CJGE20220634

    FANG Yong, WANG Yubo, WANG Kai, et al. Risk evaluation method for shield clogging based on interface adhesion force[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1813-1821. (in Chinese) doi: 10.11779/CJGE20220634
    [28]
    陶力铭. 盾构刀盘-土壤界面黏附机理试验研究[D]. 成都: 西南交通大学, 2020.

    TAO Liming. Experimental Study on the Adhesion Mechanism of Shield Cutterhead-Soil Interface[D]. Chengdu: Southwest Jiaotong University, 2020. (in Chinese)
    [29]
    JIA X. Theoretical analysis of the adhesion force of soil to solid materials[J]. Biosystems Engineering, 2004, 87(4): 489-493.
    [30]
    LEROY P, REVIL A. A triple-layer model of the surface electrochemical properties of clay minerals[J]. Journal of Colloid and interface Science, 2004, 270(2): 371-380.
    [31]
    TIKHOMOLOVA K P. Electro-osmosis[D]. Ellis Horwood: University of St Petersburg, 1993.
    [32]
    SPAGNOLI G, KLITZSCH N, FERNANDEZ-STEEGER T, et al. Application of electro-osmosis to reduce the adhesion of clay during mechanical tunnel driving[J]. Environmental & Engineering Geoscience, 2011, 17(4): 417-426.
    [33]
    HOLLMANN F S, THEWES M. Assessment method for clay clogging and disintegration of fines in mechanised tunnelling[J]. Tunnelling and Underground Space Technology, 2013, 37: 96-106.
    [34]
    MOHAMEDELHASSAN E, SHANG J Q. Effects of electrode materials and current intermittence in electro-osmosis[J]. Proceedings of the ICE Ground Improvement, 2001, 5(1): 3-11.
    [35]
    MITCHELL JK, SOGA K. Fundamentals of Soil Behavior[M]. 3rd ed. Hoboken NJ: Wiley, 2005.
  • Cited by

    Periodical cited type(37)

    1. 张远庆,陈勇,王世梅,王力. 岸坡渗流潜蚀模型试验系统变革研究. 三峡大学学报(自然科学版). 2025(02): 48-54 .
    2. 程瑞林,汪泾周,范钦煜,湛正刚,周伟,马刚. 高心墙堆石坝材料本构模型计算的适用性研究. 中南大学学报(自然科学版). 2024(01): 219-229 .
    3. 张丹,邱子源,金伟,张梓航,罗玉龙. 粗粒土渗透及渗透变形试验缩尺方法研究. 岩土力学. 2024(01): 164-172 .
    4. 崔熙灿,张凌凯,王建祥. 缩尺效应对砂砾石料力学特性及其本构模型的影响. 浙江大学学报(工学版). 2024(06): 1198-1208 .
    5. 邹德高,宁凡伟,刘京茂,崔更尧,孔宪京. 基于超大型三轴仪的堆石料动力特性缩尺效应研究. 水利学报. 2024(05): 528-536 .
    6. 王睿,王兰民,周燕国,王刚. 土动力学与岩土地震工程. 土木工程学报. 2024(07): 71-89+105 .
    7. 刘赛朝,瞿常杰,石北啸. 堆石料缩尺效应试验及其数值模拟. 江西水利科技. 2024(05): 332-336 .
    8. 邹德高,刘京茂,宁凡伟,孔宪京,崔更尧,金伟,湛正刚. 基于超大型三轴试验和原型监测的堆石料模型参数缩尺效应修正. 岩土工程学报. 2024(12): 2476-2483 . 本站查看
    9. 陈洪春,王珊,段玉昌,王柳江,梁睿斌,徐祥,沈超敏. 基于现场载荷试验的压实土石填筑料变形参数反演. 三峡大学学报(自然科学版). 2023(01): 22-27 .
    10. 蒋明杰,朱俊高,张小勇,梅国雄,赵辰洋. 缩尺效应对粗颗粒土静止侧压力系数影响规律试验. 工程科学与技术. 2023(02): 259-266 .
    11. 蒋明杰,吉恩跃,王天成,栗书亚,朱俊高,梅国雄. 粗粒土抗剪强度的缩尺效应规律试验研究. 岩土工程学报. 2023(04): 855-861 . 本站查看
    12. 孙向军,潘家军,卢一为,左永振,周跃峰,王俊鹏. 级配和密度组合对粗粒土强度特性的影响. 长江科学院院报. 2023(08): 133-138 .
    13. 沈超敏,邓刚,刘斯宏,严俊,毛航宇,王柳江. 基于颗粒堆积算法的堆石料压实密度预测研究. 水利学报. 2023(08): 920-929 .
    14. 潘家军,孙向军. 粗颗粒土缩尺方法及缩尺效应研究进展. 长江科学院院报. 2023(11): 1-8 .
    15. 吴鑫磊,石北啸,刘赛朝,徐卫卫,常伟坤. 考虑颗粒破碎的堆石料大型三轴试验. 科学技术与工程. 2022(02): 749-756 .
    16. 徐琨,杨启贵,周伟,马刚,黄泉水. 基于可破碎离散元法的堆石料应力变形及剪胀特性缩尺效应研究. 中国农村水利水电. 2022(03): 200-206+211 .
    17. 吴平,万燎榕,夏万求,高从容. 考虑级配影响的粗粒料三轴剪切破碎特性分析. 水电能源科学. 2022(05): 156-159+155 .
    18. 孟敏强,肖杨,孙增春,张志超,蒋翔,刘汉龙,何想,吴焕然,史金权. 粗粒料及粒间微生物胶结的破碎-强度-能量耗散研究进展. 中国科学:技术科学. 2022(07): 999-1021 .
    19. 邹德高,刘京茂,孔宪京,陈楷,屈永倩,宁凡伟,龚瑾. 强震作用下特高土石坝多耦合体系损伤演化机理及安全评价准则. 岩土工程学报. 2022(07): 1329-1340 . 本站查看
    20. 徐靖,叶华洋,朱晟. 粗粒料颗粒破碎三维离散元模型及其在密度桶试验中的应用. 河海大学学报(自然科学版). 2022(04): 127-134 .
    21. 汤洪洁,杨正权,赵宇飞,田忠勇. 阿尔塔什高面板坝变形控制与安全保障关键技术研究. 水利规划与设计. 2022(12): 26-32 .
    22. 宁凡伟,孔宪京,邹德高,刘京茂,余翔,周晨光. 筑坝材料缩尺效应及其对阿尔塔什面板坝变形及应力计算的影响. 岩土工程学报. 2021(02): 263-270 . 本站查看
    23. 刘赛朝,吴鑫磊,徐卫卫,石北啸. 堆石料缩尺效应试验研究. 人民长江. 2021(01): 173-176+217 .
    24. 姜景山,左永振,程展林,韦有信,张超,夏威夷. 考虑密度影响的粗粒料剪胀模型. 人民长江. 2021(04): 182-186 .
    25. 潘生贵,陈少峰,杨辉,郑有强,李传懿. 海岸带强风化花岗岩强度及应力应变特性的尺寸效应研究. 工程勘察. 2021(05): 6-10 .
    26. 毛航宇,刘斯宏,沈超敏,王柳江,初文婷. 温、湿控制粗粒料大型三轴仪的研制及应用. 岩石力学与工程学报. 2021(06): 1258-1266 .
    27. 周泳峰,王俊杰,王爱国,杨希. 缩尺效应对堆石料颗粒破碎特性的影响. 水电能源科学. 2021(08): 165-168+65 .
    28. 王家全,畅振超,王晴,唐毅. 不同动应力比下加筋前后砾性土的动三轴试验分析. 水力发电. 2020(04): 120-125 .
    29. 李传懿,陈志波. 海底强风化花岗岩K_0固结三轴试验尺寸效应. 中南大学学报(自然科学版). 2020(06): 1646-1653 .
    30. 邵晓泉,迟世春. 堆石料变形参数的粒径尺寸相关性研究. 岩土工程学报. 2020(09): 1715-1722 . 本站查看
    31. 李学丰,李瑞杰,张军辉,王奇. 堆石料三维强度特性. 中国公路学报. 2020(09): 54-62 .
    32. 吴鑫磊,徐卫卫,刘赛朝,常伟坤,石北啸. 粗粒料缩尺效应的试验研究进展. 水利科学与寒区工程. 2020(03): 1-7 .
    33. 王晋伟,迟世春,邵晓泉,赵飞翔. 正交–等值线法在堆石料细观参数标定中的应用. 岩土工程学报. 2020(10): 1867-1875 . 本站查看
    34. 陈之祥,邵龙潭,李顺群,郭晓霞,田筱剑. 三维真土压力盒的设计与应力参数的计算. 岩土工程学报. 2020(11): 2138-2145 . 本站查看
    35. 郭万里,朱俊高,王俊杰,鲁洋. 粗粒土静力特性及室内测试技术研究进展. 岩石力学与工程学报. 2020(S2): 3570-3585 .
    36. 武利强,叶飞,林万青. 堆石料力学特性缩尺效应试验研究. 岩土工程学报. 2020(S2): 141-145 . 本站查看
    37. 任秋兵,李明超,杜胜利,刘承照. 筑坝堆石料抗剪强度间接测定模型与实用计算公式研究. 水利学报. 2019(10): 1200-1213 .

    Other cited types(25)

Catalog

    Article views PDF downloads Cited by(62)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return