• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Shue, CHEN Zhiming, XU Yongfu, XU Yuran, KANG Fengyi, DU Zhongbao. Calculation of rising height of capillary water based on fractal model for grain-size distribution[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(10): 2221-2228. DOI: 10.11779/CJGE20230426
Citation: LI Shue, CHEN Zhiming, XU Yongfu, XU Yuran, KANG Fengyi, DU Zhongbao. Calculation of rising height of capillary water based on fractal model for grain-size distribution[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(10): 2221-2228. DOI: 10.11779/CJGE20230426

Calculation of rising height of capillary water based on fractal model for grain-size distribution

More Information
  • Received Date: May 16, 2023
  • Available Online: May 10, 2024
  • The rising of capillary water, which is driven due to the pressure difference at both sides of the meniscus caused by surface tension, causes the phenomenon of mud boiling and mud seepage in the silt roadbed. The rising height of the capillary water is the key to preventing and controlling the mud boiling and mud seepage in the roadbed. A method for calculating the rising height of the capillary water based on the grain-size distribution is proposed, which overcomes the test defects in measuring the height of the capillary water. By using the sieving tests to calculated the grain-size distribution and fractal of silt, a fractal model is established to analyze the effects of the fractal dimension, air-entry value, porosity, the maximum rising height of the capillary water and saturated permeability coefficient on the rising height and velocity of the capillary water. The calculated results show that the rising height of the capillary water is positively correlated with the time as a power function, increases with the fractal dimension, air-entry value, the maximum rising height of the capillary water and saturated permeability coefficient, and decreases with the porosity. The rising speed of the capillary water is only related to the fractal dimension of the grain-size distribution and increases with the increase of the fractal dimension of the grain-size distribution but not related to the porosity, air-entry value and the saturated permeability coefficient.
  • [1]
    张睿, 徐永福, 于波. 交通荷载下低路堤高速公路路基沉降计算[J]. 地下空间与工程学报, 2016, 12(4): 952-957.

    ZHANG Rui, XU Yongfu, YU Bo. Cumulative settlement of highway subgrade with low embankment induced by traffic load[J]. Chinese Journal of Underground Space and Engineering, 2016, 12(4): 952-957. (in Chinese)
    [2]
    张睿, 徐永福, 于波, 等. 低路堤高速公路路基路面处理措施分析[J]. 地下空间与工程学报, 2013, 9(增刊1): 1675-1680.

    ZHANG Rui, XU Yongfu, YU Bo, et al. Analysis of measures to reduce the traffic-load-settlement of low embankment highway[J]. Chinese Journal of Underground Space and Engineering, 2013, 9(S1): 1675-1680. (in Chinese)
    [3]
    江国勤, 管同心, 徐永福. 天然软土地基上路堤临界高度分析[J]. 路基工程, 2011(2): 47-49. doi: 10.3969/j.issn.1003-8825.2011.02.015

    JIANG Guoqin, GUAN Tongxin, XU Yongfu. Analysis on critical height of embankment on natural soft foundation[J]. Subgrade Engineering, 2011(2): 47-49. (in Chinese) doi: 10.3969/j.issn.1003-8825.2011.02.015
    [4]
    宋国森, 徐永福, 林飞, 等. 滨海盐渍土用于路基填料的关键技术研究[J]. 公路, 2013, 58(12): 56-60. doi: 10.3969/j.issn.0451-0712.2013.12.012

    SONG Guosen, XU Yongfu, LIN Fei, et al. Study on key technology of coastal saline soil used as subgrade filler[J]. Highway, 2013, 58(12): 56-60. (in Chinese) doi: 10.3969/j.issn.0451-0712.2013.12.012
    [5]
    赵海, 周进华, 徐永福, 等. 低液限粉土路基填筑施工现场试验分析[J]. 中外公路, 2013, 33(2): 34-38. doi: 10.3969/j.issn.1671-2579.2013.02.009

    ZHAO Hai, ZHOU Jinhua, XU Yongfu, et al. Field test analysis of low liquid limit silt subgrade filling construction[J]. Journal of China & Foreign Highway, 2013, 33(2): 34-38. (in Chinese) doi: 10.3969/j.issn.1671-2579.2013.02.009
    [6]
    陶涛, 陈志明, 徐永福, 等. 吹填海砂路基包边土厚度确定方法研究[J]. 中外公路, 2016, 36(1): 32-36.

    TAO Tao, CHEN Zhiming, XU Yongfu, et al. Study on the method of determining the thickness of wrapping soil for subgrade with blown sea sand[J]. Journal of China & Foreign Highway, 2016, 36(1): 32-36. (in Chinese)
    [7]
    胡明鉴, 张晨阳, 崔翔, 等. 钙质砂中毛细水高度与影响因素试验研究[J]. 岩土力学, 2019, 40(11): 4157-4164.

    HU Mingjian, ZHANG Chenyang, CUI Xiang, et al. Experimental study on capillary rise and influencing factors in calcareous sand[J]. Rock and Soil Mechanics, 2019, 40(11): 4157-4164. (in Chinese)
    [8]
    邓改革, 何建国, 康宁波. 基于多物理场耦合的毛细水高度研究[J]. 水土保持研究, 2021, 28(4): 136-141.

    DENG Gaige, HE Jianguo, KANG Ningbo. Research on capillary water height based on multi-physical field coupling[J]. Research of Soil and Water Conservation, 2021, 28(4): 136-141. (in Chinese)
    [9]
    WASHBURN EW. The dynamics of capillary flow[J]. Physics Review, 1921, 17(3): 273-283. doi: 10.1103/PhysRev.17.273
    [10]
    RICHARDS LA. Capillary conduction of liquids through porous mediums[J]. Physics, 1931, 1(5): 318-333. doi: 10.1063/1.1745010
    [11]
    AGHAJANI H F, SOROUSH A, SHOURIJEH P T. An improved solution to capillary rise of water in soils[J]. Inter Journal of Civil Engineering, 2011, 9(4): 275-281.
    [12]
    张平, 吴昊, 殷洪建, 等. 颗粒级配对毛细水上升影响的研究[J]. 节水灌溉, 2010(7): 24-26.

    ZHANG Ping, WU Hao, YIN Hongjian, et al. Effect of particle size distribution on capillary water upward movement[J]. Water Saving Irrigation, 2010(7): 24-26. (in Chinese)
    [13]
    夏宁, 黄琴龙. 长江口细砂毛细水上升高度试验研究[J]. 粉煤灰综合利用, 2009, 22(6): 3-5. doi: 10.3969/j.issn.1005-8249.2009.06.001

    XIA Ning, HUANG Qinlong. The experimental research of the capillarity water rising height of Changjiang delta fine sand[J]. Fly Ash Comprehensive Utilization, 2009, 22(6): 3-5. (in Chinese) doi: 10.3969/j.issn.1005-8249.2009.06.001
    [14]
    栗现文, 周金龙, 赵玉杰, 等. 高矿化度对砂性土毛细水上升影响[J]. 农业工程学报, 2011, 27(8): 84-89. doi: 10.3969/j.issn.1002-6819.2011.08.014

    LI Xianwen, ZHOU Jinlong, ZHAO Yujie, et al. Effects of high-TDS on capillary rise of phreatic water in sand soil[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(8): 84-89. (in Chinese) doi: 10.3969/j.issn.1002-6819.2011.08.014
    [15]
    苗强强, 陈正汉, 田卿燕, 等. 非饱和含黏土砂毛细上升试验研究[J]. 岩土力学, 2011, 32: 327-333.

    MIAO Qiangqiang, CHEN Zhenghan, TIAN Qinyan, et al. Experimental study of capillary rise in unsaturated clayey sand[J]. Rock and Soil Mechanics, 2011, 32: 327-333. (in Chinese)
    [16]
    赵明华, 刘小平, 陈安. 非饱和土路基毛细作用分析[J]. 公路交通科技, 2008, 25(8): 26-30.

    ZHAO Minghua, LIU Xiaoping, CHEN An. Analysis of capillary action in unsaturated soil roadbeds[J]. Journal of Highway and Transportation Research and Development, 2008, 25(8): 26-30. (in Chinese)
    [17]
    王生平, 李涛. 非饱和土路基的毛细作用及其影响因素分析[J]. 公路, 2012, 57(6): 124-128.

    WANG Shengping, LI Tao. Analysis of capillary action and its influencing factors of unsaturated soil subgrade[J]. Highway, 2012, 57(6): 124-128. (in Chinese)
    [18]
    米海存, 何红曼, 段吉波. 风干砂毛细上升实验研究[J]. 节水灌溉, 2014(6): 26-28, 31.

    MI Haicun, HE Hongman, DUAN Jibo. Experimental study on aeolian sand capillary rise[J]. Water Saving Irrigation, 2014(6): 26-28, 31. (in Chinese)
    [19]
    袁玉卿, 李伟, 赵丽敏. 豫东黄泛区粉砂土毛细水上升研究[J]. 公路交通科技, 2016, 33(2): 33-38.

    YUAN Yuqin, LI Wei, ZHAO Limin. Study on capillary water rise in chalky sandy soils in the yellow floodplain of east Henan province[J]. Journal of Highway and Transportation Research and Development, 2016, 33(2): 33-38. (in Chinese)
    [20]
    杜红普, 刘波, 王华军, 等. 基于土水特征曲线预测多孔介质毛细上升过程[J]. 工程地质学报, 2013, 21(3): 345-350.

    DU Hongpu, LIU Bo, WANG Huajun, et al. Prediction of capillary rise in porous media based on soil water characteristic curve[J]. Journal of Engineering Geology, 2013, 21(3): 345-350. (in Chinese)
    [21]
    肖红宇, 刘明寿, 彭鹏程, 等. 基于黏性土分形特征的毛细水上升高度研究[J]. 水文地质工程地质, 2016, 43(6): 48-52, 58.

    XIAO Hongyu, LIU Mingshou, PENG Pengcheng, et al. A study of the height of capillary water rise based on fractal characteristics of cohesive soil[J]. Hydrogeology & Engineering Geology, 2016, 43(6): 48-52, 58. (in Chinese)
    [22]
    LAGO M, ARAUJO M. Capillary rise in porous media[J]. J Colloid Interface Sci, 2001, 234(1): 35-43.
    [23]
    XU Y F. Fractal approach to unsaturated shear strength[J]. Journal of Geotechnical & Geoenvironmental Engineering, ASCE, 2004, 3: 264-274.
    [24]
    徐永福. 颗粒破碎对粗颗粒填料剪切强度的影响[J]. 固体力学学报, 2018, 39(5): 513-521.

    XU Yongfu. Effect of particle breakage on shear strength of coarse granular materials[J]. Chinese Journal of Solid Mechanics, 2018, 39(5): 513-521. (in Chinese)
    [25]
    徐永福. 考虑颗粒破碎影响的粗粒土的剪切强度理论[J]. 岩土工程学报, 2018, 40(7): 1171-1179.

    XU Yongfu. Theory of shear strength of granular materials based on particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1171-1179. (in Chinese)
    [26]
    徐永福. 固体颗粒破碎的分维演化规律[J]. 工程地质学报, 2017, 25(5): 1287-1292.

    XU Yongfu. Evolution of fractal dimension of particle breakage[J]. Journal of Engineering Geology, 2017, 25(5): 1287-1292. (in Chinese)
    [27]
    OCHIAI M, OZAO R, YAMAZAKI Y. Self-similarity law of particle size distribution and energy law in size reduction of solids[J]. Physica A, 1992, 191: 295-300.
    [28]
    KAPUR P C. Kinetics of granulation by non-random coalescence mechanism[J]. Chemical Engineering Science, 1972, 27(10): 1863-1869.
    [29]
    AUSTIN L G, ROGERS R S C. Powder technology in industrial size reduction[J]. Powder Technology, 1985, 42(1): 91-109.
    [30]
    FRANCES C, LINÉ A. Comminution process modelling based on the monovariate and bivariate direct quadrature method of moments[J]. AIChE Journal, 2014, 60(5): 1621-1640.
    [31]
    MANDELBROT B B. The Fractal Geometry of Nature[M]. San Francisco: W H Freeman, 1982.
    [32]
    徐永福, 孙婉莹, 吴正根. 我国膨胀土的分形结构的研究[J]. 河海大学学报, 1997, 25(1): 18-25.

    XU Yongfu, SUN Wanying, WU Zhenggen. A study of the fractal structure of our expansive soils[J]. Journal of Hohai University, 1997, 25(1): 18-25. (in Chinese)
    [33]
    刘松玉, 方磊, 陈浩东. 论我国特殊土粒度分布的分形结构[J]. 岩土工程学报, 1993, 15(1): 23-30.

    LIU Songyu, FANG Lei, CHEN Haodong. On the fractal structure of particle size distribution of special soils in China[J]. Journal of Hohai University, 1993, 15(1): 23-30. (in Chinese)
    [34]
    WATABE Y, LEROUEIL S, Le BIHAN J-P. Influence of compaction conditions on pore-size distribution and saturated hydraulic conductivity of a glacial till[J]. Can Geotech J, 2000, 37: 1184-1194.
    [35]
    TERZAGHI K. Theoretical Soil Mechanics[M]. New York: Wiley, 1843.
    [36]
    XU Y F, DONG P. Fractal approach to hydraulic properties in unsaturated porous media[J]. Chaos, Solitons & Fractals, 2004, 19(2): 327-337.
    [37]
    XU Y F. Calculation of unsaturated hydraulic conductivity using a fractal model for the pore-size distribution[J]. Computers and Geotechnics, 2004, 31(7): 549-557.
  • Cited by

    Periodical cited type(4)

    1. 许旭堂,陈翔龙,杨枫,鲜振兴,徐祥. 循环荷载对充填结构面岩体剪切特性的影响. 长安大学学报(自然科学版). 2025(01): 24-37 .
    2. 杜淼然,尹培杰,张越,晏长根,欧运起,付弘哲. 基于分形特征的3D打印岩石结构面剪切特性研究. 工程地质学报. 2025(02): 458-470 .
    3. 班力壬,杜伟升,候宇航,戚承志,陶志刚. 考虑实际接触三维粗糙度退化的软岩节理剪胀规律预测模型. 岩土工程学报. 2024(05): 1008-1017 . 本站查看
    4. 焦峰,许江,彭守建,何美鑫,张心睿,程亮. 常法向刚度条件下人工结构面剪切力学特性及损伤演化规律试验研究. 煤炭学报. 2023(11): 4065-4077 .

    Other cited types(7)

Catalog

    Article views PDF downloads Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return