• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WU Kai, CHEN Renpeng, MENG Fanyan, HU Bo. Experimental study on mechanical behavior of sand and silty clay under vertical unloading[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(10): 2174-2182. DOI: 10.11779/CJGE20230850
Citation: WU Kai, CHEN Renpeng, MENG Fanyan, HU Bo. Experimental study on mechanical behavior of sand and silty clay under vertical unloading[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(10): 2174-2182. DOI: 10.11779/CJGE20230850

Experimental study on mechanical behavior of sand and silty clay under vertical unloading

More Information
  • Received Date: September 03, 2023
  • Available Online: March 24, 2024
  • The ultimate unloading ratio and the critical unloading ratio are the crucial parameters for determining the depth of disturbance below excavation base. The vertical unloading tests are performed on the Fujian sand and Fuzhou silty clay, with characteristic unloading ratios determined based on the normalized resilience value. The results indicate that the unloading response of soils changes in three phases. When the loading ratio is less than the critical unloading ratio, the response of soils can be ignored. Meanwhile, as the loading ratio exceeds the ultimate unloading ratio, the normalized resilience value and lateral pressure coefficient of soils increase rapidly, and the resilience modulus and shear modulus decrease significantly. Additionally, at this point, the horizontal residual stress ratio displays an inflection point and begins to decline. Furthermore, the test methods and the judgment criteria of characteristic unloading ratios are analyzed. The statistical mean values of the characteristic unloading ratios of clay, silt and sand in the unloading tests are calculated.
  • [1]
    张治国, 张孟喜, 王卫东. 基坑开挖对临近地铁隧道影响的两阶段分析方法[J]. 岩土力学, 2011, 32(7): 2085-2092. doi: 10.3969/j.issn.1000-7598.2011.07.028

    ZHANG Zhiguo, ZHANG Mengxi, WANG Weidong. Two-stage method for analyzing effects on adjacent metro tunnels due to foundation pit excavation[J]. Rock and Soil Mechanics, 2011, 32(7): 2085-2092. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.07.028
    [2]
    MENG F Y, CHEN R P, XU Y, et al. Contributions to responses of existing tunnel subjected to nearby excavation: a review[J]. Tunnelling and Underground Space Technology, 2022, 119: 104195. doi: 10.1016/j.tust.2021.104195
    [3]
    郭鹏飞, 杨龙才, 周顺华, 等. 基坑开挖引起下卧隧道隆起变形的实测数据分析[J]. 岩土力学, 2016, 37(增刊2): 613-621.

    GUO Pengfei, YANG Longcai, ZHOU Shunhua, et al. Measurement data analyses of heave deformation of shield tunnels due to overlying pit excavation[J]. Rock and Soil Mechanics, 2016, 37(S2): 613-621. (in Chinese)
    [4]
    潘林有, 胡中雄. 深基坑卸荷回弹问题的研究[J]. 岩土工程学报, 2002, 24(1): 101-104. doi: 10.3321/j.issn:1000-4548.2002.01.023

    PAN Linyou, HU Zhongxiong. Experimental study on the resilience of pit under unloading[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(1): 101-104. (in Chinese) doi: 10.3321/j.issn:1000-4548.2002.01.023
    [5]
    李赞, 刘松玉, 吴恺, 等. 基于多功能CPTU测试的基坑开挖扰动深度确定方法[J]. 岩土工程学报, 2021, 43(1): 181-187.

    LI Zan, LIU Songyu, WU Kai, et al. Determination of disturbance depth due to excavation using multifunctional CPTU tests[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 181-187. (in Chinese)
    [6]
    李建民. 超深超大基坑回弹变形计算方法的试验研究[D]. 北京: 中国建筑科学研究院, 2010.

    LI Jianmin. Research on the Calculation Method of Resilient Deformation in Ultra-Deep Foundation Pit[D]. Beijing: China Academy of Building Research, 2010. (in Chinese)
    [7]
    孙玉永, 周顺华, 庄丽. 考虑残余应力的基坑被动区土压力及强度计算[J]. 土木工程学报, 2011, 44(9): 94-99.

    SUN Yuyong, ZHOU Shunhua, ZHUANG Li. Calculation of passive earth pressure and shear strength in foundation pits considering residual stress[J]. China Civil Engineering Journal, 2011, 44(9): 94-99. (in Chinese)
    [8]
    秦爱芳, 胡中雄, 彭世娟. 上海软土地区受卸荷影响的基坑工程被动区土体加固深度研究[J]. 岩土工程学报, 2008, 30(6): 935-940. doi: 10.3321/j.issn:1000-4548.2008.06.025

    QIN Aifang, HU Zhongxiong, PENG Shijuan. Depth of soil stabilization in passive area of foundation pits for Shanghai soft clay[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(6): 935-940. (in Chinese) doi: 10.3321/j.issn:1000-4548.2008.06.025
    [9]
    张淑朝, 张建新, 张阳, 等. 基坑开挖卸荷土体回弹实验研究[J]. 岩土工程学报, 2008, 30(增刊1): 426-429.

    ZHANG Shuchao, ZHANG Jianxin, ZHANG Yang, et al. Experimental study on rebound of clay due to foundation excavation[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(S1): 426-429. (in Chinese)
    [10]
    鲁泰山, 刘松玉, 蔡国军, 等. 软土地层基坑开挖扰动及土体再压缩变形研究[J]. 岩土力学, 2021, 42(2): 565-573, 580.

    LU Taishan, LIU Songyu, CAI Guojun, et al. Study on the disturbance and recompression settlement of soft soil induced by foundation excavation[J]. Rock and Soil Mechanics, 2021, 42(2): 565-573, 580. (in Chinese)
    [11]
    潘林有, 程玉梅, 胡中雄. 卸荷状态下粘性土强度特性试验研究[J]. 岩土力学, 2001, 22(4): 490-493. doi: 10.3969/j.issn.1000-7598.2001.04.030

    PAN Linyou, CHENG Yumei, HU Zhongxiong. Experimental study on the shear strength of clay under the unloading state[J]. Rock and Soil Mechanics, 2001, 22(4): 490-493. (in Chinese) doi: 10.3969/j.issn.1000-7598.2001.04.030
    [12]
    陈昆, 闫澍旺, 孙立强, 等. 开挖卸荷状态下深基坑变形特性研究[J]. 岩土力学, 2016, 37(4): 1075-1082.

    CHEN Kun, YAN Shuwang, SUN Liqiang, et al. Analysis of deformation of deep foundation pit under excavation unloading condition[J]. Rock and Soil Mechanics, 2016, 37(4): 1075-1082. (in Chinese)
    [13]
    邓指军, 贾坚. 地铁车站深基坑卸荷回弹影响深度的试验[J]. 城市轨道交通研究, 2008, 11(3): 52-55. doi: 10.3969/j.issn.1007-869X.2008.03.014

    DENG Zhijun, JIA Jian. On unloading resilience depth in deep station foundation pit[J]. Urban Mass Transit, 2008, 11(3): 52-55. (in Chinese) doi: 10.3969/j.issn.1007-869X.2008.03.014
    [14]
    李德宁, 楼晓明, 杨敏. 上海地区基坑开挖卸荷土体回弹变形试验研究[J]. 岩土力学, 2011, 32(增刊2): 244-249.

    LI Dening, LOU Xiaoming, YANG Min. Experimental researches on unloading resilient deformation properties during excavations in Shanghai area[J]. Rock and Soil Mechanics, 2011, 32(S2): 244-249. (in Chinese)
    [15]
    刘国彬, 侯学渊. 软土基坑隆起变形的残余应力分析法[J]. 地下工程与隧道, 1996(2): 1-7.

    LIU Guobin, HOU Xueyuan. Residual stress analysis method of foundation pit in soft soil foundation pit[J]. Underground Engineering and Tunnels, 1996(2): 1-7. (in Chinese)
    [16]
    张帆舸, 黄昌富, 姚铁军, 等. 泥炭土压缩及回弹变形规律试验研究[J]. 岩土工程学报, 2021, 43(增刊2): 259-262. doi: 10.11779/CJGE2021S2061

    ZHANG Fange, HUANG Changfu, YAO Tiejun, et al. Experimental study on laws of compression and rebound deformation of peaty soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 259-262. (in Chinese) doi: 10.11779/CJGE2021S2061
    [17]
    杨坪, 唐益群, 马险峰, 等. 冲填土卸荷回弹变形离心模型试验研究[J]. 岩石力学与工程学报, 2007(增刊2): 4258-4263.

    YANG Pin, TANG Yiqun, MA Xianfeng, et al. Study on unloading rebound deformation of dredger fill with centrifuge modeling test[J]. Chinese Journal of Rock Mechanics and Engineering, 2007(S2): 4258-4263. (in Chinese)
    [18]
    楼晓明, 李德宁, 刘建航. 深基坑坑底地基的回弹应力与回弹变形[J]. 土木工程学报, 2012, 45(4): 134-138.

    LOU Xiaoming, LI Dening, LIU Jianhang. Rebound stress and deformation below the bottom of deep excavations[J]. China Civil Engineering Journal, 2012, 45(4): 134-138. (in Chinese)
    [19]
    MEND F Y, CHEN R P, XIE S W, et al. Observed behaviors of a long and deep excavation and collinear underlying tunnels in Shenzhen granite residual soil[J]. Tunnelling and Underground Space Technology, 2020, 103: 103504. doi: 10.1016/j.tust.2020.103504
    [20]
    城市轨道交通结构安全保护技术规程: DB33/T1139— 2017[S]. 北京: 中国建筑工业出版社, 2017.

    Technical Code for Protection of Urban Rail Transit Structures: DB33/T1139—2017[S]. Beijing: China Architecture & Building Press, 2017. (in Chinese)
    [21]
    既有轨道交通盾构隧道结构安全保护技术规程: T/CCES 36—2022[S]. 北京: 中国建筑工业出版社, 2022.

    Technical Code for Protection of Existing Shield Tunnels of Rail Transit: T/CCES 36—2022[S]. Beijing: China Architecture & Building Press, 2022. (in Chinese)
    [22]
    YUN T S, EVANS T M. Evolution of at-rest lateral stress for cemented sands: experimental and numerical investigation[J]. Granular Matter, 2011, 13(5): 671-683. doi: 10.1007/s10035-011-0279-y
    [23]
    土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.

    Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
    [24]
    刘宏扬, 罗强, 周鑫, 等. 路基压实粉质黏土水平残余应力估算方法探讨[J]. 岩石力学与工程学报, 2020, 39(8): 1710-1718.

    LIU Hongyang, LUO Qiang, ZHOU Xin, et al. Discussion on estimation method of horizontal residual stress of subgrade compacted silty clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(8): 1710-1718. (in Chinese)
    [25]
    付龙龙, 周顺华, 王长丹, 等. 局部加卸载下立方体阵列接触力残留的细观特性[J]. 岩石力学与工程学报, 2017, 36(12): 2981-2989.

    FU Longlong, ZHOU Shunhua, WANG Changdan, et al. Mesoscopic characteristics of residual contact force in block array subjected to partial loading and unloading[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(12): 2981-2989. (in Chinese)
    [26]
    庄丽, 周顺华. 砂的静力加卸载试验和应力释放模型研究[J]. 岩土力学, 2009, 30(9): 2667-2673, 2685. doi: 10.3969/j.issn.1000-7598.2009.09.021

    ZHUANG Li, ZHOU Shunhua. Static loading-unloading test of sand and stress release model[J]. Rock and Soil Mechanics, 2009, 30(9): 2667-2673, 2685. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.09.021
    [27]
    MAYNE P W, KULHAWY F H. K0-OCR relationship in soil[J]. Journal of Geotechnical Engineering Division, 1982, 108(6): 851-72. doi: 10.1061/AJGEB6.0001306
    [28]
    HARDIN B O. Vibration modulus of normally consolidated clay[J]. Journal of the Soil Mechanics and Foundations Division, 1968, 94(2): 353-370. doi: 10.1061/JSFEAQ.0001100
    [29]
    MEND F Y, CHEN R P, XIE S W, et al. Excavation-induced arching effect below base level and responses of long-collinear underlying existing tunnel[J]. Tunnelling Underground Space Technology, 2022, 123: 104417. doi: 10.1016/j.tust.2022.104417

Catalog

    Article views (392) PDF downloads (91) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return