Citation: | LI Tao, TANG Xiaowei, ZENG Ling, YANG Gang. Dynamic pore water pressure characteristics of saturated sand-clay and sand-silt-clay mixtures[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 276-283. DOI: 10.11779/CJGE2023S20044 |
[1] |
SASAKI Y, TOWHATA I, MIYAMOTO K, et al. Reconnaissance report on damage in and around river levees caused by the 2011 off the Pacific coast of Tohoku earthquake[J]. Soils and Foundations, 2012, 52(5): 1016-1032. doi: 10.1016/j.sandf.2012.11.018
|
[2] |
SEED H B, MARTIN P P, LYSMER J. Pore-water pressure changes during soil liquefaction[J]. Journal of the Geotechnical Engineering Division, 1976, 102(4): 323-346. doi: 10.1061/AJGEB6.0000258
|
[3] |
BOOKER J R, RAHMAN M S, SEED H B. Gadflea: a computer program for the analysis of pore pressure generation and dissipation during cyclic or earthquake loading[R]. Berkeley, CA: Earthquake Engineering Research Center, University of California, 1976.
|
[4] |
BAZIAR M, SHAHNAZARI H, SHARAFI H. A laboratory study on the pore pressure generation model for Firouzkooh silty sands using hollow torsional test[J]. International Journal of Civil Engineering, 2011, 9: 126-134.
|
[5] |
许成顺, 王冰, 杜修力, 等. 循环加载频率对砂土液化模式的影响试验研究[J]. 土木工程学报, 2021, 54(11): 109-118. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202111011.htm
XU Chengshun, WANG Bing, DU Xiuli, et al. Experimental study on effect of cyclic loading frequency on liquefaction mode of sand[J]. China Civil Engineering Journal, 2021, 54(11): 109-118. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202111011.htm
|
[6] |
董青, 周正华, 苏杰, 等. 基于对数动骨架考虑可逆孔压的有效应力本构研究[J]. 岩土工程学报, 2020, 42(12): 2322-2329. doi: 10.11779/CJGE202012020
DONG Qing, ZHOU Zhenghua, SU Jie, et al. Constitutive model for effective stress based on logarithmic skeleton curve considering reversible pore pressure[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2322-2329. (in Chinese) doi: 10.11779/CJGE202012020
|
[7] |
王桂萱, 桑野二郎, 竹村次朗. 循环荷载下砂质混合土孔隙水压力特性研究[J]. 岩土工程学报, 2004, 26(4): 541-545. doi: 10.3321/j.issn:1000-4548.2004.04.023
WANG Guixuan, JiRO Kuwano, JIRO Takemura. Study on excess pore water pressures of sands mixed with clays under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4): 541-545. (in Chinese) doi: 10.3321/j.issn:1000-4548.2004.04.023
|
[8] |
吴琪, 王路阳, 刘启菲, 等. 基于剪切应变特征的饱和珊瑚砂超静孔压发展模型试验研究[J]. 岩土工程学报, 2023, 45(10): 2091-2099. doi: 10.11779/CJGE20220956
WU Qi, WANG Luyang, LIU Qifei, et al. Experimental study on development model of excess pore pressure for saturated coral sand based on shear strain characteristics[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2091-2099. (in Chinese) doi: 10.11779/CJGE20220956
|
[9] |
张伏光, 聂卓琛, 陈孟飞, 等. 不排水循环荷载条件下胶结砂土宏微观力学性质离散元模拟研究[J]. 岩土工程学报, 2021, 43(3): 456-464. doi: 10.11779/CJGE202103008
ZHANG Fuguang, NIE Zhuochen, CHEN Mengfei, et al. DEM analysis of macro- and micro-mechanical behaviors of cemented sand subjected to undrained cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 456-464. (in Chinese) doi: 10.11779/CJGE202103008
|
[10] |
王志华, 何健, 高洪梅, 等. 基于触变流体理论的可液化土体振动孔压模型[J]. 岩土工程学报, 2018, 40(12): 2332-2340. doi: 10.11779/CJGE201812023
WANG Zhihua, HE Jian, GAO Hongmei, et al. Dynamic pore water pressure model for liquefiable soils based on theory of thixotropic fluid[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2332-2340. (in Chinese) doi: 10.11779/CJGE201812023
|
[11] |
土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版, 2019.
Standard for Soil Test Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
|
[12] |
刘洋, 吴顺川, 周健. 循环荷载下砂土变形的细观数值模拟Ⅱ: 密砂试验结果[J]. 岩土工程学报, 2007, 29(11): 1676-1682. doi: 10.3321/j.issn:1000-4548.2007.11.014
LIU Yang, WU Shunchuan, ZHOU Jian. Micro-numerical simulation of cyclic biaxial test Ⅱ: results of dense sand[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(11): 1676-1682. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.11.014
|
[13] |
LI T, TANG X W. Influences of low fines content and fines mixing ratio on the undrained static shear strength of sand-silt-clay mixtures[J]. European Journal of Environmental and Civil Engineering, 2022, 26(9): 3706-3728. doi: 10.1080/19648189.2020.1813206
|
1. |
葛苗苗,朱才辉,盛岱超,PINEDA Jubert,李宁. 非饱和压实黄土渗气特性及细观渗气机制研究. 岩石力学与工程学报. 2025(01): 221-235 .
![]() | |
2. |
胡静,金林廉,吕志豪,张家康,边学成. 基于考虑变形效应的土-水特征曲线求解非饱和地基动力响应. 岩土工程学报. 2025(02): 397-406 .
![]() | |
3. |
周葆春,江星澐,马全国,单丽霞,王江伟,李颖,易先达,孔令伟. 低应力和湿化路径下膨胀土的力学行为与本构模拟. 岩土工程学报. 2025(04): 695-704 .
![]() | |
4. |
李佳文,陈高明,田世龙,韩博文,冯怀平,杨志浩. 土体含水率对振动压实的影响及电阻率演化特征研究. 振动与冲击. 2025(07): 16-25 .
![]() | |
5. |
吴炎,胡坤,姜马欢,李荟楠,彭哲. 两种气体作用下非饱和江边吹填砂三轴试验研究. 人民长江. 2024(02): 211-215+230 .
![]() | |
6. |
赵中航,林昱利,郭浩天,刘全想,任淇淇. 温度及饱和度对粉质黏土变形特性的影响. 低温建筑技术. 2024(02): 119-123 .
![]() | |
7. |
赵习武. 土工格室在库岸非饱和土边坡稳定性治理中的应用. 水利技术监督. 2024(06): 276-278+282 .
![]() | |
8. |
张莹,刘忠,谢文博. 非饱和土地基的承载比试验分析. 工程与建设. 2024(02): 417-419 .
![]() | |
9. |
尹义豪,钟小春,何子良,黄思远,何纯豪,高始军,张箭. 考虑压力、温度效应的黏性土黏附强度变化规律研究. 现代隧道技术. 2024(03): 175-183 .
![]() | |
10. |
朱振慧,赵连军,张防修,黄李冰. 基于黏粒含量的黄河下游堤防土水特征曲线预测研究. 人民黄河. 2024(10): 55-61 .
![]() | |
11. |
陈可,王琛,梁发云,汪中卫. 考虑水力滞后与变形耦合的非饱和土持水曲线模型. 岩土力学. 2024(12): 3694-3704+3716 .
![]() | |
12. |
李纯,王煜斌,王刚. 层状土体变特性及变形计算方法研究进展. 水利与建筑工程学报. 2023(04): 1-9 .
![]() | |
13. |
权国绍,刘鹏. 强降雨条件下高填路段路基滑坡稳定性数值优化分析. 粘接. 2023(11): 165-168 .
![]() | |
14. |
周子宜. 鸡姆塘水库大坝除险加固渗流与坝坡稳定分析. 水利科学与寒区工程. 2023(11): 33-36 .
![]() | |
15. |
上官云龙,李东鑫,王罡. 冻融循环对膨胀土力学特性的影响及本构描述. 吉林建筑大学学报. 2023(06): 33-38 .
![]() |