Citation: | WANG Yapeng, LI Guoyu, CHEN Dun, MA Wei, ZHANG Xuan. Deformation characteristics and shakedown behaviors of frozen silty clay under complex cyclic stress paths[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 134-139. DOI: 10.11779/CJGE2023S20017 |
[1] |
NIE R S, LI Y F, LENG W M, et al. Deformation characteristics of fine-grained soil under cyclic loading with intermittence[J]. Acta Geotechnica, 2020, 15(11): 3041-3054. doi: 10.1007/s11440-020-00955-3
|
[2] |
LIN T S, ISHIKAWA T, MARUYAMA K, et al. Pavement design method in Japan with consideration of climate effect and principal stress axis rotation[J]. Transportation Geotechnics, 2021, 28: 100552. doi: 10.1016/j.trgeo.2021.100552
|
[3] |
WU T Y, JIN H X, GUO L, et al. Predicting method on settlement of soft subgrade soil caused by traffic loading involving principal stress rotation and loading frequency[J]. Soil Dynamics and Earthquake Engineering, 2022, 152: 107023. doi: 10.1016/j.soildyn.2021.107023
|
[4] |
董彤, 郑颖人, 孔亮, 等. 考虑主应力轴方向的砂土各向异性强度准则与滑动面研究[J]. 岩土工程学报, 2018, 40(4): 736-742. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201804024.htm
DONG Tong, ZHENG Yingren, KONG Liang, et al. Strength criteria and slipping planes of anisotropic sand considering direction of major principal stress[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 736-742. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201804024.htm
|
[5] |
陈敦, 马巍, 王大雁, 等. 定向剪切应力路径下冻结黏土变形特性试验[J]. 岩土力学, 2018, 39(7): 2483-2490.
CHEN Dun, MA Wei, WANG Dayan, et al. Experimental study of deformation characteristics of frozen clay under directional shear stress path[J]. Rock and Soil Mechanics, 2018, 39(7): 2483-2490. (in Chinese)
|
[6] |
张斌龙, 王大雁, 马巍, 等. 主应力轴旋转条件下冻结黏土累积塑性应变与临界动应力特性研究[J]. 岩土工程学报, 2023, 45(3): 551-560. doi: 10.11779/CJGE20211149
ZHANG Binlong, WANG Dayan, MA Wei, et al. Characteristics of cumulative plastic strain and critical dynamic stress of frozen clay under principal stress rotation[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 551-560. (in Chinese) doi: 10.11779/CJGE20211149
|
[7] |
QIAN J G, WANG Y G, YIN Z Y, et al. Experimental identification of plastic shakedown behavior of saturated clay subjected to traffic loading with principal stress rotation[J]. Engineering Geology, 2016, 214: 29-42. doi: 10.1016/j.enggeo.2016.09.012
|
[8] |
ZHOU Z W, MA W, LI G Y, et al. A novel evaluation method for accumulative plastic deformation of granular materials subjected to cyclic loading: taking frozen subgrade soil as an example[J]. Cold Regions Science and Technology, 2020, 179: 103152. doi: 10.1016/j.coldregions.2020.103152
|
[9] |
王庆志, 周志伟, 张淑娟. 青藏铁路路基粗颗粒填料动力特性和安定性行为研究[J]. 冰川冻土, 2022, 44(2): 566-582. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT202202020.htm
WANG Qingzhi, ZHOU Zhiwei, ZHANG Shujuan. Study on dynamic properties and shakedown behaviors of coarse-grained fillers in Qinghai-Tibet Railway subgrade[J]. Journal of Glaciology and Geocryology, 2022, 44(2): 566-582. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT202202020.htm
|
[10] |
CHEN D, WANG D Y, MA W, et al. A strength criterion for frozen clay considering the influence of stress Lode angle[J]. Canadian Geotechnical Journal, 2019, 56(11): 1557-1572. doi: 10.1139/cgj-2018-0054
|
[11] |
GU F, ZHANG Y Q, LUO X, et al. Characterization and prediction of permanent deformation properties of unbound granular materials for Pavement ME Design[J]. Construction and Building Materials, 2017, 155: 584-592. doi: 10.1016/j.conbuildmat.2017.08.116
|
[12] |
WERKMEISTER S, DAWSON A R, WELLNER F. Pavement design model for unbound granular materials[J]. Journal of Transportation Engineering, 2004, 130(5): 665-674. doi: 10.1061/(ASCE)0733-947X(2004)130:5(665)
|
[13] |
CHEN W B, FENG W Q, YIN J H, et al. Characterization of permanent axial strain of granular materials subjected to cyclic loading based on shakedown theory[J]. Construction and Building Materials, 2019, 198: 751-761. doi: 10.1016/j.conbuildmat.2018.12.012
|