Citation: | WANG Feng, YUAN Junhong, WU Tunasheng. Influences of basalt fibers on characteristics of shrinkage cracking of clay[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 128-131. DOI: 10.11779/CJGE2023S10003 |
[1] |
JAVADI S, GHAVAMI M, ZHAO Q, et al. Advection and retardation of non-polar contaminants in compacted clay barrier material with organoclay amendment[J]. Applied Clay Science, 2017, 142: 30-39. doi: 10.1016/j.clay.2016.10.041
|
[2] |
DEMDOUM A, GUEDDOUDA M K, GOUAL I, et al. Effect of landfill leachate on the hydromechanical behavior of bentonite-geomaterials mixture[J]. Construction and Building Materials, 2020, 234: 117356. doi: 10.1016/j.conbuildmat.2019.117356
|
[3] |
SAFARI E, JALILI GHAZIZADE M, ABDULI M A, et al. Variation of crack intensity factor in three compacted clay liners exposed to annual cycle of atmospheric conditions with and without geotextile cover[J]. Waste Management, 2014, 34(8): 1408-1415. doi: 10.1016/j.wasman.2014.03.029
|
[4] |
LI J, TANG C S, WANG D Y, et al. Effect of discrete fibre reinforcement on soil tensile strength[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6(2): 133-137. doi: 10.1016/j.jrmge.2014.01.003
|
[5] |
HEJAZI S M, SHEIKHZADEH M, ABTAHI S M, et al. A simple review of soil reinforcement by using natural and synthetic fibers[J]. Construction and Building Materials, 2012, 30: 100-116. doi: 10.1016/j.conbuildmat.2011.11.045
|
[6] |
NARANI S S, ABBASPOUR M, MIR MOHAMMAD HOSSEINI S M, et al. Sustainable reuse of Waste Tire Textile Fibers (WTTFs) as reinforcement materials for expansive soils: with a special focus on landfill liners/covers[J]. Journal of Cleaner Production, 2020, 247: 119151. doi: 10.1016/j.jclepro.2019.119151
|
[7] |
TANG C S, SHI B, GAO W, et al. Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil[J]. Geotextiles and Geomembranes, 2007, 25(3): 194-202. doi: 10.1016/j.geotexmem.2006.11.002
|
[8] |
SHAH V, WANARE R, R IYER K K, et al. Evaluation of the role of fibres and admixture(s) on sustainable crack reduction in expansive soil[J]. Materials Today: Proceedings, 2023.
|
[9] |
OWINO A O, HOSSAIN Z. The influence of basalt fiber filament length on shear strength development of chemically stabilized soils for ground improvement[J]. Construction and Building Materials, 2023, 374: 130930. doi: 10.1016/j.conbuildmat.2023.130930
|
[10] |
NDEPETE C P, SERT S, BEYCIOĞLU A, et al. Exploring the effect of basalt fibers on maximum deviator stress and failure deformation of silty soils using ANN, SVM and FL supported by experimental data[J]. Advances in Engineering Software, 2022, 172: 103211. doi: 10.1016/j.advengsoft.2022.103211
|
[11] |
PARASTAR F, HEJAZI S M, SHEIKHZADEH M, et al. A parametric study on hydraulic conductivity and self-healing properties of geotextile clay liners used in landfills[J]. Journal of Environmental Management, 2017, 202: 29-37. http://www.xueshufan.com/publication/2735042728
|
[12] |
PAUL S, SARKAR D. Performance evaluation of natural fiber reinforced Laterite soil for road pavement construction[J]. Materials Today: Proceedings, 2022, 62: 1246-1251. doi: 10.1016/j.matpr.2022.04.534
|
[13] |
BU F, LIU J, MEI H, et al. Cracking behavior of sisal fiber-reinforced clayey soil under wetting-drying cycles[J]. Soil and Tillage Research, 2023, 227: 105596. doi: 10.1016/j.still.2022.105596
|
[14] |
丁选明, 方华强, 刘汉龙, 等. 纤维改性珊瑚泥裂隙动态演化规律试验研究[J]. 岩土工程学报, 2023, 45(9): 1801-1812. doi: 10.11779/CJGE20220653
DING Xuanming, FANG Huaqiang, LIU Hanlong, et al. Dynamic evolution laws of desiccation cracking of fiber-improved coral silt[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1801-1812. (in Chinese) doi: 10.11779/CJGE20220653
|
[1] | DENG Yunpeng, PENG Di, DONG Mei, XU Riqing, FU Yuhan. DEM simulation of desiccation cracking in clay considering capillarity and adsorption[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1703-1711. DOI: 10.11779/CJGE20230189 |
[2] | JIANG Zhongming, GAN Lu, ZHANG Dengxiang, XIAO Zhezheng, LIAO Junhui. Distribution characteristics and evolution laws of liner cracks in underground caverns for compressed air energy storage[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(1): 110-119. DOI: 10.11779/CJGE20221165 |
[3] | MU Wen, TANG Chaosheng, CHENG Qing, TIAN Bengang, LIU Weijie, HU Huicong, SHI Bin. Effects of cracks on evaporation process of water in soils[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2641-2648. DOI: 10.11779/CJGE20221115 |
[4] | LIU Guan-shi, CHEN Yong-gui, ZENG Xian-yun, ZHANG Gui-bao. Effects of ambient air humidity and temperature on crack development of compacted expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 260-268. DOI: 10.11779/CJGE202002007 |
[5] | PU Cheng-zhi, YANG Shi-jiao, ZHANG Chun-yang. Fracture mechanism of pre-cracked specimens influenced by opening width[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1836-1844. DOI: 10.11779/CJGE201910007 |
[6] | TANG Chao-sheng, SHI Bin, CUI Yu-jun. Behaviors and mechanisms of desiccation cracking of soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1415-1423. DOI: 10.11779/CJGE201808006 |
[7] | TANG Chao-sheng, WANG De-yin, SHI Bin, LIU Chun. Quantitative analysis of soil desiccation crack network[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2298-2305. |
[8] | Chen Wenling, Li Ning. Damage model of the rock mass medium with intermittent cracks[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(4): 430-434. |
[9] | Hao Zhe, Wang Jieqiang, He Xiuren. Computerized simulation of crack grouting in rock mass[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(6): 727-730. |
[10] | Wang Mingyang, Qian Qihu. Attenuation Law of Explosive Wave Propagation in Cracks[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(2): 42-46. |
1. |
吴敏,黄英豪,董仕骏,章荣军. 高分子絮凝剂对淤泥板框压滤脱水效果及影响机理. 岩土工程学报. 2025(03): 470-476 .
![]() | |
2. |
黄挺,肖承波,张继生,侯利军,邬一鹏,戴国亮. 用于基础冲刷修复的抗分散水泥土性能试验研究. 中国港湾建设. 2025(04): 28-35 .
![]() | |
3. |
杨易之,林远志,葛天歌,王睿妍,徐洁. 路基用流态固化土的流动性与强度试验研究. 建材技术与应用. 2025(03): 38-42 .
![]() | |
4. |
王瑞彩,吴腾. 改良垃圾焚烧底渣固化疏浚淤泥性能试验研究. 河海大学学报(自然科学版). 2024(01): 93-100 .
![]() | |
5. |
黄英豪,戴济群. 我国疏浚淤泥处置与利用研究进展. 中国水利. 2024(03): 25-28 .
![]() | |
6. |
王文翀,黄英豪,王硕,彭广益,王淮. 减水剂对流态固化淤泥流动性的影响试验研究. 岩土工程学报. 2024(08): 1605-1612 .
![]() | |
7. |
王硕,黄英豪,王文翀,王淮,彭广益. 新拌固化淤泥流动性测试标准试验研究. 水利水运工程学报. 2024(04): 89-100 .
![]() | |
8. |
朱军,黄英豪,王硕. 基于地铁工程低碳模型的资源化应用示范研究. 河南科学. 2024(10): 1477-1487 .
![]() | |
9. |
韩爽,谈云志,杨舒涵,明华军,吴军,王冲,肖宇. 膨胀珍珠岩调控固化淤泥物理-力学性能的方法. 岩土力学. 2024(11): 3324-3332 .
![]() | |
10. |
武亚军,张海强,占嘉城,骆嘉成. 取代真空联合堆载预压膜上砂保护垫层的流态固化土研究. 东北大学学报(自然科学版). 2024(10): 1494-1503 .
![]() | |
11. |
盛传明,马超,练继建,刘昉. 固废底泥水下应用抗分散性能研究. 水资源与水工程学报. 2023(01): 181-189 .
![]() | |
12. |
朱伟,王璐,钱勇进,方忠强,陆凯君,魏斌,孟立夫. 水下隧道中人工岛建设现状及主要问题. 河海大学学报(自然科学版). 2023(03): 72-83+120 .
![]() | |
13. |
何俊,吕晓龙,王文鹏. 碱渣-矿渣固化疏浚淤泥含水率控制方法研究. 人民长江. 2023(07): 196-202 .
![]() | |
14. |
王矿山,庞龙,戴振鑫,章晖,张新军. 湖底淤泥固化土的环境耐久性研究. 岩土工程技术. 2023(04): 455-460 .
![]() | |
15. |
郎瑞卿,裴璐熹,孙立强,周龙,李恒. 新拌不同液限淤泥固化土流动性试验研究. 岩土力学. 2023(10): 2789-2797 .
![]() | |
16. |
吴敏,黄英豪,尹洪斌,王硕,陈永,王文翀. 典型无机絮凝剂对疏浚淤泥絮凝效果及出水水质影响研究. 岩土工程学报. 2023(S1): 79-83 .
![]() | |
17. |
林泓民,商志阳,彭劼. 聚丙烯酰胺改善流态固化处理效果的试验研究. 河北工程大学学报(自然科学版). 2023(04): 67-73 .
![]() | |
18. |
张振海. 淤泥、淤泥质土地基的特征与处理研究——以浙江宁波某项目沉降的治理过程为例. 重庆建筑. 2022(05): 37-42 .
![]() | |
19. |
林泓民,白兰兰,彭劼,王成俊,李刚. 含泥量对砂质土流态固化处理效果的影响研究. 河北工程大学学报(自然科学版). 2022(03): 30-35 .
![]() | |
20. |
王强,李操,葛单单,王潇. 疏浚淤泥固化处理研究进展. 安徽建筑. 2022(12): 144-147 .
![]() | |
21. |
黄英豪,吴敏,陈永,王硕,王文翀,武亚军. 絮凝技术在疏浚淤泥脱水处治中的研究进展. 水道港口. 2022(06): 802-812 .
![]() |