• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YANG Zhongping, XIANG Gonggu, ZHAO Qian, LIU Xinrong, ZHAO Yalong. Shear mechanical properties of limestone structural plane under hydrodynamic force-dissolution[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1555-1563. DOI: 10.11779/CJGE20220682
Citation: YANG Zhongping, XIANG Gonggu, ZHAO Qian, LIU Xinrong, ZHAO Yalong. Shear mechanical properties of limestone structural plane under hydrodynamic force-dissolution[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1555-1563. DOI: 10.11779/CJGE20220682

Shear mechanical properties of limestone structural plane under hydrodynamic force-dissolution

More Information
  • Received Date: May 25, 2022
  • Available Online: February 23, 2023
  • The dissolved rock mass is widely distributed in Southwest China. Under the action of karst, the continuous deterioration of structural plane strength is one of the important factors affecting the stability of rock mass. In order to explore the evolution characteristics of structural plane under dissolution and to reveal the influences of karstification on the shear mechanical properties of limestone structural plane, based on the example of the dissolution rock slope of Jiwei Mountain in Wulong, the apparent evolution patterns of limestone structural plane and the evolution laws of shear mechanical properties as well as the deterioration mechanism of structural plane are expounded by using the indoor seepage dissolution and direct shear tests on the structural plane and the three-dimensional morphology optical scanning technology. The results show that under the dual action of chemical corrosion and physical erosion, the limestone structural plane has experienced four stages: point selective dissolution, thin groove linear stable seepage dissolution, strong dissolution of dominant pipeline flow and wall slow dissolution. During the dissolution process, the surface roughness index and dissolution rate index of limestone structural plane increase with the increase of dissolution time, and exhibit a convergence trend. During the direct shear process, the corrosion structural plane shows two-stage characteristics of the initial locking and the later shear friction and sliding, and the longer the corrosion time and the higher the stress level, the more obvious the shear hardening characteristics. With the increase of the corrosion time, the main anti-sliding structure of the structural plane develops from a rigid stable microconvex to a fine solution groove and finally evolves into a deep karst pipeline, and its ultimate shear strength shows a trend of " first decreasing, then increasing". The prediction model for shear strength of limestone dissolution structural plane is established based on the Barton's formula.
  • [1]
    殷跃平, 朱继良, 杨胜元. 贵州关岭大寨高速远程滑坡—碎屑流研究[J]. 工程地质学报, 2010, 18(4): 445-454. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201004003.htm

    YIN Yueping, ZHU Jiliang, YANG Shengyuan. Investigation of a high speed and long Run-out rockslide-debris flow at dazhai in Guanling of Guizhou Province[J]. Journal of Engineering Geology, 2010, 18(4): 445-454. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201004003.htm
    [2]
    郭静芸, 李守定, 李滨, 等. 岩溶山区崩滑灾害变形破坏地质模式分类[J]. 中国岩溶, 2020, 39(4): 478-491. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202004003.htm

    GUO Jingyun, LI Shouding, LI Bin, et al. Geological models classification of deformation and failures for collapses and landslides in Karst mountainous areas[J]. Carsologica Sinica, 2020, 39(4): 478-491. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202004003.htm
    [3]
    许强, 邓茂林, 李世海, 等. 武隆鸡尾山滑坡形成机理数值模拟研究[J]. 岩土工程学报, 2018, 40(11): 2012-2021. doi: 10.11779/CJGE201811007

    XU Qiang, DENG Maolin, LI Shihai, et al. Numerical simulation for formation of Jiweishan landslide in Wulong County, Chongqing City of China[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 2012-2021. (in Chinese) doi: 10.11779/CJGE201811007
    [4]
    崔芳鹏, 李滨, 杨忠平, 等. 贵州纳雍普洒滑坡动力触发机制离散元模拟分析[J]. 中国岩溶, 2020, 39(4): 524-534. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202004008.htm

    CUI Fangpeng, LI Bin, YANG Zhongping, et al. Discrete element modelling on dynamic triggering mechanism of the Pusa landslide in Nayong County, Guizhou Province[J]. Carsologica Sinica, 2020, 39(4): 524-534. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202004008.htm
    [5]
    余逍逍, 史文兵, 王小明, 等. 基于数字图像处理技术的溶蚀岩体细观变形破坏机制模拟研究[J]. 中国岩溶, 2020, 39(3): 409-416. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202003015.htm

    YU Xiaoxiao, SHI Wenbing, WANG Xiaoming, et al. Simulation on mesoscopic deformation and failure mechanism of dissolved rock mass using digital image processing technology[J]. Carsologica Sinica, 2020, 39(3): 409-416. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202003015.htm
    [6]
    TAO M, WANG J, ZHAO H T, et al. The influence of acid corrosion on dynamic properties and microscopic mechanism of marble[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2022, 8(1): 36.
    [7]
    QIAO L P, WANG Z C, HUANG A D. Alteration of mesoscopic properties and mechanical behavior of sandstone due to hydro-physical and hydro-chemical effects[J]. Rock Mechanics and Rock Engineering, 2017, 50(2): 255-267.
    [8]
    LI S G, HUO R K, WANG B, et al. Experimental study on physicomechanical properties of sandstone under acidic environment[J/OL]. Advances in Civil Engineering, 2018: 1-15. https://doi.org/10.1155/2018/5784831.
    [9]
    熊绍真, 史文兵, 王小明. 单轴压缩条件下岩溶化裂隙岩体损伤破坏特征研究[J]. 工程地质学报, 2022, 30(4): 1098-1110. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202204011.htm

    XIONG Shaozhen, SHI Wenbing, WANG Xiaoming. Damage and failure characteristics of Karst fractured rock mass under uniaxial compression[J]. Journal of Engineering Geology, 2022, 30(4): 1098-1110. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202204011.htm
    [10]
    PAN J L, CAI M F, LI P, et al. A damage constitutive model of rock-like materials containing a single crack under the action of chemical corrosion and uniaxial compression[J]. Journal of Central South University, 2022, 29(2): 486-498.
    [11]
    CHEN Y L, XIAO P, DU X, et al. Study on damage statistical constitutive model of triaxial compression of acid-etched rock under coupling effect of temperature and confining pressure[J]. Materials (Basel, Switzerland), 2021, 14(23): 7414.
    [12]
    HUO R K, LIANG Y L, LI S G, et al. The damage mechanism and deterioration characteristics of acid-corroded sandstone: an experimental study[J]. Arabian Journal of Geosciences, 2022, 15(6): 537.
    [13]
    LI S G, WU Y M, HUO R K, et al. Mechanical properties of acid-corroded sandstone under uniaxial compression[J]. Rock Mechanics and Rock Engineering, 2021, 54(1): 289-302.
    [14]
    穆成林, 李华东, 裴向军, 等. 溶蚀岩体各向异性力学性质的试验研究[J]. 西南交通大学学报, 2022, 57(5): 1070-1076, 1112. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202205018.htm

    MU Chenglin, LI Huadong, PEI Xiangjun, et al. Experimental study on anisotropy mechanical properties of corroded rock mass[J]. Journal of Southwest Jiaotong University, 2022, 57(5): 1070-1076, 1112. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202205018.htm
    [15]
    朱雷, 王小群, 聂德新, 等. 基于随机模型溶蚀岩体强度参数研究[J]. 工程地质学报, 2014, 22(6): 1034-1038. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201406003.htm

    ZHU Lei, WANG Xiaoqun, NIE Dexin, et al. Stochastic method based evaluation of corrosion rock strength parameters[J]. Journal of Engineering Geology, 2014, 22(6): 1034-1038. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201406003.htm
    [16]
    GU D M, HUANG D, ZHANG W G, et al. A 2D DEM-based approach for modeling water-induced degradation of carbonate rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 126: 104188.
    [17]
    WANG L Q, WANG C S, KHOSHNEVISAN S, et al. Determination of two-dimensional joint roughness coefficient using support vector regression and factor analysis[J]. Engineering Geology, 2017, 231: 238-251.
    [18]
    尹宏, 王述红, 董卓然, 等. 引入因子分析的结构面粗糙度RBF复合参数模型[J]. 岩土工程学报, 2022, 44(4): 721-730. doi: 10.11779/CJGE202204015

    YIN Hong, WANG Shuhong, DONG Zhuoran, et al. RBF composite parameter model for structural surface roughness with factor analysis[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 721-730. (in Chinese) doi: 10.11779/CJGE202204015
    [19]
    LIU X G, ZHU W C, YU Q L, et al. Estimation of the joint roughness coefficient of rock joints by consideration of two-order asperity and its application in double-joint shear tests[J]. Engineering Geology, 2017, 220: 243-255.
    [20]
    陈冲, 陈胜宏. 结构面轮廓不等间距采样、向量表征与粗糙度[J]. 岩石力学与工程学报, 2021, 40(增刊1): 2798-2805. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2021S1022.htm

    CHEN Chong, CHEN Shenghong. Unequal interval sampling, vector representation and roughness of joint profile[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(S1): 2798-2805. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2021S1022.htm
    [21]
    刘新荣, 许彬, 黄俊辉, 等. 多形态贯通型岩体结构面宏细观剪切力学行为研究[J]. 岩土工程学报, 2021, 43(3): 406-415. doi: 10.11779/CJGE202103002

    LIU Xinrong, XU Bin, HUANG Junhui, et al. Macro-meso shear mechanical behaviors of coalescent rock joints with different morphologies[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 406-415. (in Chinese) doi: 10.11779/CJGE202103002
    [22]
    LIU X R, KOU M M, LU Y M, et al. An experimental investigation on the shear mechanism of fatigue damage in rock joints under pre-peak cyclic loading condition[J]. International Journal of Fatigue, 2018, 106: 175-184.
    [23]
    刘佑荣, 唐辉明. 岩体力学[M]. 武汉: 中国地质大学出版社, 1999.

    LIU Yourong, TANG Huiming. Rock Mechanics[M]. Wuhan: China University of Geosciences Press, 1999. (in Chinese)
    [24]
    邓建伟. 岩溶发育带岩体强度特征研究[D]. 西安: 长安大学, 2014.

    DENG Jianwei. The Rock Strength Characteristics Research of Karst Belt[D]. Xi'an: Chang'an University, 2014. (in Chinese)
    [25]
    王旭东, 俞作辉, 裴强强, 等. 砂岩制样方法及误差影响研究[J]. 岩土力学, 2020, 41(增刊2): 1-10.

    WANG Xudong, YU Zuohui, PEI Qiangqiang, et al. Research on preparation method of sandstone sample and its error influence[J]. Rock and Soil Mechanics, 2020, 41(S2): 1-10. (in Chinese)
    [26]
    BANDIS S C, LUMSDEN A C, BARTON N R. Fundamentals of rock joint deformation[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1983, 20(6): 249-268.
  • Cited by

    Periodical cited type(27)

    1. 李明昊,李皋,张毅,杨旭,李红涛,冯佳歆,宿腾跃. 位移约束和温度耦合下致密砂岩热诱导微裂纹发育规律研究. 岩石力学与工程学报. 2025(01): 174-184 .
    2. 黄彦华,张坤博,杨圣奇,田文岭,朱振南,印昊,李明旭. 高温后花岗岩微观特征及其对强度影响规律研究. 岩石力学与工程学报. 2025(02): 359-372 .
    3. Wendong Yang,Xiang Zhang,Bingqi Wang,Jun Yao,Pathegama G.Ranjith. Experimental study on the physical and mechanical properties of carbonatite rocks under high confining pressure after thermal treatment. Deep Underground Science and Engineering. 2025(01): 105-118 .
    4. 解经宇,宋继伟,隋建才,赵萌,王韧,曾翀,王建龙. 我国干热花岗岩在不同冷却条件下的力学响应研究进展. 煤田地质与勘探. 2025(03): 126-142 .
    5. 李明耀,李绍金,彭磊,丁宇飞,左建平. 基于相场法的花岗岩弹塑性损伤模型及其细观力学行为研究. 岩石力学与工程学报. 2024(03): 611-622 .
    6. 黄彦华,陶然,韩媛媛,陈笑,罗一鸣,武世岩. 温度对不同孔隙砂岩Ⅰ型断裂韧度影响的试验研究. 采矿与安全工程学报. 2024(02): 430-436 .
    7. 于洪丹,卢琛,陈卫忠,黄嘉玮,李洪辉. 塔木素黏土岩蠕变特性试验与理论研究. 岩石力学与工程学报. 2024(S1): 3578-3585 .
    8. 杨文东,王柄淇,姚军,井文君,张祥. 三轴压缩下实时高温和热处理后碳酸盐岩力学特性的试验研究. 岩石力学与工程学报. 2024(06): 1347-1358 .
    9. 闫程锦,郤保平. 基于颗粒流GBM模型的花岗岩热力损伤特性研究. 水利水电技术(中英文). 2024(05): 170-180 .
    10. 赵奎,李从明,曾鹏,熊良锋,龚囱,黄震. 持续高温作用下花岗岩特征应力及声发射特征试验研究. 岩石力学与工程学报. 2024(07): 1580-1592 .
    11. 贾蓬,钱一锦,毛松泽,徐雪桐,卢佳亮. 晶粒尺寸对花岗岩动态劈裂力学特性及断面粗糙度影响的试验研究. 应用基础与工程科学学报. 2024(05): 1449-1462 .
    12. 夏开宗,刘夏临,林英书,张飞,司志伟,孙朝燚. 基于岩体波速的地下洞室围岩损伤区岩体力学参数取值方法及工程应用. 岩石力学与工程学报. 2024(10): 2414-2429 .
    13. 黄麟淇,刘茂林,王钊炜,郭懿德,司雪峰,李夕兵,李超. 温度影响和真三轴加载下深部圆形隧洞破坏研究(英文). Journal of Central South University. 2024(09): 3119-3141 .
    14. 赵奎,李从明,曾鹏,熊良锋,龚囱,黄震. 热损伤花岗岩能量演化机制及损伤本构模型. 金属矿山. 2024(11): 45-54 .
    15. 黄彦华,陶然,陈笑,罗一鸣,韩媛媛. 高温后花岗岩断裂特性及热裂纹演化规律研究. 岩土工程学报. 2023(04): 739-747 . 本站查看
    16. 张涛,蔚立元,苏海健,高亚楠,贺虎,魏江波. 基于多级力链网络分析的花岗岩压缩特性的矿物尺寸效应研究. 岩石力学与工程学报. 2023(08): 1988-2003 .
    17. 李卫,苏海健,蔚立元,刘日成,陈广印. 高温热处理砂岩Ⅰ-Ⅲ混合断裂特性试验研究. 采矿与安全工程学报. 2023(06): 1281-1289 .
    18. 顾冬,马力,罗坤,孙云儒. 水利枢纽工程场地基岩高温三轴压缩渗透力学试验研究. 水利科技与经济. 2022(02): 74-78 .
    19. 张涛,蔚立元,鞠明和,李明,苏海健,季浩奇. 基于PFC3D-GBM的晶体–单元体尺寸比对花岗岩动态拉伸特性影响分析. 岩石力学与工程学报. 2022(03): 468-478 .
    20. 李博宇,彭文祥,王李昌,隆威. 温度与化学作用下岩石物理力学性质研究进展. 地质装备. 2022(02): 33-37 .
    21. 刘磊,李睿,秦浩,刘洋. 高温后深部矽卡岩动力学特性及微观破坏机制研究. 岩土工程学报. 2022(06): 1166-1174 . 本站查看
    22. 詹懿德,汪发祥,佘恬钰,沈佳轶,吕庆. 考虑围压效应的块状节理岩体变形破坏数值模拟. 水利水运工程学报. 2022(04): 70-76 .
    23. 李明耀,彭磊,左建平,王智敏,李绍金,薛喜仁. 基于DIP-FFT数值方法的花岗岩多尺度力学特性研究. 岩石力学与工程学报. 2022(11): 2254-2267 .
    24. 王春,熊宏威,舒荣华,薛文越,胡慢谷,张攀龙,雷彬彬. 高温处理后含铜矽卡岩的动态力学特性及损伤破碎特征. 中国有色金属学报. 2022(09): 2801-2818 .
    25. 梁忠豪,秦楠,孙嘉彬,葛强. 高温作用后黄砂岩三轴压缩及细观破裂机制. 科学技术与工程. 2021(24): 10430-10439 .
    26. 郝宪杰,刘继山,魏英楠,陈泽宇,靳多祥,潘光耀,张谦. 2000m超深煤系储层力学及声发射特征的围压效应. 中南大学学报(自然科学版). 2021(08): 2611-2621 .
    27. 徐文龙,徐鼎平,柳秀洋. 高温热损伤对花岗岩单轴破坏模式和强度的影响研究. 皖西学院学报. 2021(05): 94-99 .

    Other cited types(31)

Catalog

    Article views (457) PDF downloads (138) Cited by(58)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return