• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
ZHANG De, ZHANG Zechao, ZHANG Lulu, ZHANG Jie, CAO Zijun. Bayesian estimation of probability distributions of undrained shear strength of soils with limited site data[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1259-1268. DOI: 10.11779/CJGE20220299
Citation: ZHANG De, ZHANG Zechao, ZHANG Lulu, ZHANG Jie, CAO Zijun. Bayesian estimation of probability distributions of undrained shear strength of soils with limited site data[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1259-1268. DOI: 10.11779/CJGE20220299

Bayesian estimation of probability distributions of undrained shear strength of soils with limited site data

More Information
  • Received Date: March 20, 2022
  • Available Online: February 15, 2023
  • To address the issue of poor reliability of the design parameters due to limited or incomplete geotechnical investigation data, a cohesive soil parameter database containing 1679 sets of data from 141 sites is established. The site-specific Bayesian method (SBM) and the hierarchical Bayesian method (HBM) are used to estimate the probability distribution of undrained shear strength of cohesive soils by utilizing the data from a specific site and multiple sites, respectively. The results show that compared with the SBM method, the HBM method can effectively reduce the uncertainty of parameter estimation when there is only limited measured data at the target site, and it is less affected by the number of measuring points at the target site. The leave-one-out cross-validation (LOO-CV) combined with the log pointwise predictive density (lppd) is used to compare the accuracy of the two methods. The results show that the lppdloo-cv index of the HBM method is larger, indicating that the overall prediction accuracy of the HBM method is higher. Therefore, the HBM method is more suitable for the estimation of undrained shear strength parameters in the case of limited site data, and the posterior means obtained by the HBM method can be used for parameter estimation of new sites.
  • [1]
    李典庆, 吕天健, 唐小松. 基于多维Gaussian Copula的岩土体设计参数概率转换模型构建方法[J]. 岩土工程学报, 2021, 43(9): 1592-1601. doi: 10.11779/CJGE202109003

    LI Dianqing, LÜ Tianjian, TANG Xiaosong. Establishing probabilistic transformation models for geotechnical design parameters using multivariate Gaussian Copula[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1592-1601. (in Chinese) doi: 10.11779/CJGE202109003
    [2]
    张广文, 刘令瑶. 确定随机变量概率分布参数的推广Bayes法[J]. 岩土工程学报, 1995, 17(3): 91-94. http://www.cgejournal.com/cn/article/id/9873

    ZHANG Guangwen, LIU Lingyao. Extended Bayes method for determining probability distribution parameters of random variables[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(3): 91-94. (in Chinese) http://www.cgejournal.com/cn/article/id/9873
    [3]
    American Petroleum Institute. ANSI/API RECOMMENDED PRACTICE 2GEO Geotechnical and Foundation Design Considerations[M]. Washington: API Publishing Services, 2014.
    [4]
    LUMB P. The variability of natural soils[J]. Canadian Geotechnical Journal, 1966, 3(2): 74-97. doi: 10.1139/t66-009
    [5]
    LACASSE S, NADIM F. Uncertainties in characterising soil properties[C]//Uncertainty in the Geologic Environment: from Theory to Practice. New York, 1996.
    [6]
    宫凤强, 李夕兵, 邓建. 小样本岩土参数概率分布的正态信息扩散法推断[J]. 岩石力学与工程学报, 2006, 25(12): 2559-2564. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200612030.htm

    GONG Fengqiang, LI Xibing, DENG Jian. Probability distribution of small samples of geotechnical parameters using normal information spread method[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(12): 2559-2564. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200612030.htm
    [7]
    骆飞, 罗强, 蒋良潍, 等. 小样本岩土参数的Bootstrap估计及边坡稳定分析[J]. 岩石力学与工程学报, 2017, 36(2): 370-379. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201702009.htm

    LUO Fei, LUO Qiang, JIANG Liangwei, et al. Bootstrap estimation for geotechnical parameters of small samples and slope stability analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(2): 370-379. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201702009.htm
    [8]
    KULHAWY F H, MAYNE P W. Manual on Estimating Soil Properties for Foundation Design: EL-6800[R]. Palo Alto: Electric Power Research Institute, 1990.
    [9]
    PHOON K K, KULHAWY F H. Evaluation of geotechnical property variability[J]. Canadian Geotechnical Journal, 1999, 36(4): 625-639. doi: 10.1139/t99-039
    [10]
    MESRI G. Discussion of "New design procedure for stability of soft clays"[J]. Journal of the Geotechnical Engineering Division, 1975, 101(4): 409-412. doi: 10.1061/AJGEB6.0005026
    [11]
    MESRI G. A reevaluation of Su(mob) = 0.22σp using laboratory shear tests[J]. Canadian Geotechnical Journal, 1989, 26(1): 162-164. doi: 10.1139/t89-017
    [12]
    CHANDLER R J. The in-situ measurement of undrained shear strength of clays using the field vane[C]//Vane Shear Strength Testing in Soils: Field and Laboratory Studies (ASTM STP 1014). Baltimore, 1988.
    [13]
    CAO Z J, WANG Y. Bayesian model comparison and characterization of undrained shear strength[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(6): 04014018. doi: 10.1061/(ASCE)GT.1943-5606.0001108
    [14]
    CHING J, PHOON K K, LI K H, et al. Multivariate probability distribution for some intact rock properties[J]. Canadian Geotechnical Journal, 2019, 56(8): 1080-1097. doi: 10.1139/cgj-2018-0175
    [15]
    TANG X S, LI D Q, RONG G, et al. Impact of copula selection on geotechnical reliability under incomplete probability information[J]. Computers and Geotechnics, 2013, 49: 264-278. doi: 10.1016/j.compgeo.2012.12.002
    [16]
    汪海林, 刘航宇, 顾晓强, 等. 基于多元概率分布模型的珠海黏土多参数预测[J]. 岩土工程学报, 2021, 43(增刊2): 193-196. doi: 10.11779/CJGE2021S2046

    WANG Hailin, LIU Hangyu, GU Xiaoqiang, et al. Multi-parameter prediction of Zhuhai clay based on multivariate probability distribution model[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 193-196. (in Chinese) doi: 10.11779/CJGE2021S2046
    [17]
    BOZORGZADEH N, HARRISON J P, ESCOBAR M D. Hierarchical Bayesian modelling of geotechnical data: application to rock strength[J]. Géotechnique, 2019, 69(12): 1056-1070. doi: 10.1680/jgeot.17.P.282
    [18]
    XIAO S H, ZHANG J, YE J M, et al. Establishing region-specific NVs relationships through hierarchical Bayesian modeling[J]. Engineering Geology, 2021, 287: 106105. http://www.sciencedirect.com/science/article/pii/S0013795221001162
    [19]
    CHING J, PHOON K K. Constructing site-specific multivariate probability distribution model using Bayesian machine learning[J]. Journal of Engineering Mechanics, 2019, 145(1): 04018126. http://www.onacademic.com/detail/journal_1000040914564910_437a.html
    [20]
    CHING J, PHOON K K. Correlations among some clay parameters—the multivariate distribution[J]. Canadian Geotechnical Journal, 2014, 51(6): 686-704. http://www.researchgate.net/profile/Jianye_Ching/publication/262924656_Correlations_among_some_clay_parameters_-_The_multivariate_distribution/links/5476bda20cf29afed6142525.pdf
    [21]
    CHING J, WU S, PHOON K K. Constructing quasi-site-specific multivariate probability distribution using hierarchical Bayesian model[J]. Journal of Engineering Mechanics, 2021, 147(10): 04021069. http://doc.paperpass.com/foreign/rgArti2021163572020.html
    [22]
    GELMAN A, CARLIN J B, STERN H S, et al. Bayesian Data Analysis[M]. 3rd ed. New York: Chapman and Hall/CRC, 2013.
    [23]
    CHING J, PHOON K K. Transformations and correlations among some clay parameters—the global database[J]. Canadian Geotechnical Journal, 2014, 51(6): 663-685. http://doc.paperpass.com/foreign/rgArti2014154070750.html
    [24]
    WU X Z. Quantifying the non-normality of shear strength of geomaterials[J]. European Journal of Environmental and Civil Engineering, 2020, 24(6): 740-766. http://www.researchgate.net/profile/Xing_Wu12/publication/322198352_Quantifying_the_non-normality_of_shear_strength_of_geomaterials/links/5a5f6c700f7e9b964a1cbe84/Quantifying-the-non-normality-of-shear-strength-of-geomaterials.pdf
    [25]
    TANG X S, WANG J P, YANG W, et al. Joint probability modeling for two debris-flow variables: copula approach[J]. Natural Hazards Review, 2018, 19(2) 05018004. http://smartsearch.nstl.gov.cn/paper_detail.html?id=28c2a8479af5c13c9ae131f6483b146c
    [26]
    CAO Z J, WANG Y, LI D Q. Quantification of prior knowledge in geotechnical site characterization[J]. Engineering Geology, 2016, 203: 107-116.
    [27]
    LUNN D, JACKSON C, BEST N, et al. The BUGS Book: A Practical Introduction to Bayesian Analysis[M]. 1st ed. Chapman and Hall/CRC, 2012.
    [28]
    BOZORGZADEH N, BATHURST R J. Hierarchical Bayesian approaches to statistical modelling of geotechnical data[J]. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 2022, 16(3): 452-469. doi: 10.1080/17499518.2020.1864411
  • Related Articles

    [1]WANG Yu, ZHENG Tong, SUN Rui, QI Wenhao, LI Linggui, CHENG Yang, ZHANG Yiming. Comparative tests on seismic performance of anti-slide piles with prestressed anchor cables with different angles[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 110-115. DOI: 10.11779/CJGE2023S20012
    [2]CHAI Shaofeng, WANG Lanmin, WANG Ping, GUO Haitao, XIA Xiaoyu, CHE Gaofeng, WANG Huijuan. Shaking table tests on sliding characteristics and mechanism of liquefaction landslide of low-angle loess deposit in Shibeiyuan[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2565-2574. DOI: 10.11779/CJGE20221123
    [3]WANG Liang-feng, WANG Bin, CHEN Sheng-shui, LI Yue. Large-scale triaxial tests and modelling mechanical behaviors of soil-rockfill materials for a mine tailings dam[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 157-161. DOI: 10.11779/CJGE2018S2032
    [4]ZHENG Gang, LI Zhi-wei. Finite element analysis of response of buildings with arbitrary angle adjacent to excavations[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 615-624.
    [5]LI Dawei, HOU Chaojiong, BAI Jianbiao. Control mechanism and application of doubly supported roadways with large rigidity and high strength[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(7): 1072-1078.
    [6]JIANG Zhongxin. Discussion on sliding angle formula in "Computation of lateral soil pressure on soil nailing wall considering cohesion force and cut slope angle"[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(6): 952.
    [7]DONG Yun, YAN Zongling. 2D mechanical model tests on settlement of rock-soil filled roadbed[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(6): 943-947.
    [8]XIA Junwu, YUAN Yingshu, DONG Zhengzhu. Mechanism study on subsoil-strap footing-framework interaction in mining subsidence area[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(4): 537-541.
    [9]SU Zhongjie, YU Guangming, YANG Lun. Application of mechanical model to deformation of covered rock separation strata[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(6): 778-781.
    [10]Liu Bao-shen, Yan Ruong-gu. Mechanical Models of Fractured Rock[J]. Chinese Journal of Geotechnical Engineering, 1981, 3(4): 81-92.
  • Cited by

    Periodical cited type(7)

    1. 罗强,程田,薛元,刘宏扬,张东卿. 路堤下CFG桩复合地基稳定性分析方法及试验验证. 铁道学报. 2024(11): 145-154 .
    2. 周岳,柯辉,庞正伟,汪旭,祝必仁,王虎. 基坑开挖对超深软土复合地基桩体的影响研究. 广州建筑. 2023(06): 1-4 .
    3. 罗强,马宏飞,王腾飞,张良,蒋良潍. 路堤下混凝土桩复合地基抗桩体弯折破坏地梁效应. 中南大学学报(自然科学版). 2022(08): 3144-3155 .
    4. 郑刚,赵佳鹏,周海祚,于晓旋,夏博洋,王金山. 国内外高速公路、铁路地基处理技术回顾. 地基处理. 2021(02): 91-99 .
    5. 张经双,段雪雷,吴倩云,刘永翔,夏香港. 氯盐-干湿循环耦合作用下水泥土的力学性能. 建筑材料学报. 2021(03): 508-515+550 .
    6. 刘仕东. 上合组织(连云港)国际物流园专用铁路搅拌桩水泥掺量研究. 铁道勘察. 2020(02): 47-52 .
    7. 郑刚,周海祚. 复合地基极限承载力与稳定研究进展. 天津大学学报(自然科学与工程技术版). 2020(07): 661-673 .

    Other cited types(13)

Catalog

    Article views PDF downloads Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return