ZENG Zhangbo, HUANG Hua, MEI Longxi, PEI Zhiyong, ZOU Yi, FANG Huolang. Triaxial shear tests on soil-rock mixture and 3D multi-shear bounding surface model[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 644-651. DOI: 10.11779/CJGE20221160
    Citation: ZENG Zhangbo, HUANG Hua, MEI Longxi, PEI Zhiyong, ZOU Yi, FANG Huolang. Triaxial shear tests on soil-rock mixture and 3D multi-shear bounding surface model[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 644-651. DOI: 10.11779/CJGE20221160

    Triaxial shear tests on soil-rock mixture and 3D multi-shear bounding surface model

    More Information
    • Received Date: September 19, 2022
    • Available Online: March 15, 2023
    • The soil-rock mixture is a special geological material between discrete and continuous media. Due to the influences of genesis, component type and content, its mechanical behavior is complex and changeable, which may lead to the excessive deformation and shear failure of high fill projects of soil-rock mixture. Therefore, it is of great theoretical significance and engineering application value to study the deformation and strength characteristics of soil-rock mixture and its constitutive models. Based on the protection embankment project of Xiangbiling resettlement site in the reservoir area of Baihetan Hydropower Station, the consolidation and drainage shear tests on two kinds of fill materials of soil-rock mixture under three different confining pressures are carried out by using the large-scale triaxial test device, and the variation laws of deviatoric stress and volumetric strain with axial strain and the characteristics of shear contraction and dilation of soil-rock mixture are analyzed. On this basis, according to the critical state and bounding surface elastoplastic theories of granular soil, the critical cohesion and state parameter suitable for the soil-rock mixture are introduced, and based on the spatially randomly distributed micro-shear structures, a state-dependent three-dimensional multi-shear bounding surface model for the soil-rock mixture is established to decompose the complex macro-deformation of the soil-rock mixture into a macro-volume deformation and a series of spatially distributed and mutually independent one-dimensional micro shear deformation. The simulated results of the model are compared with the triaxial shear test ones, which verifies that the proposed model can reasonably describe the strain softening and shear dilation characteristics of the soil-rock mixture under low confining pressure and the strain hardening and shear contraction characteristics under high confining pressure.
    • [1]
      徐文杰, 胡瑞林, 曾如意. 水下土石混合体的原位大型水平推剪试验[J]. 岩土工程学报, 2006, 36(8): 2031-2039. http://cge.nhri.cn/cn/article/id/12105

      XU Wenjie, HU Ruilin, ZENG Ruyi. Research on horizontal push-shear in-situ test of subwater soil-rock mixture[J]. Chinese Journal of Geotechnical Engineering, 2006, 36(8): 2031-2039. (in Chinese) http://cge.nhri.cn/cn/article/id/12105
      [2]
      ZHANG Z L, XU W J, XIA W, et al. Large-scale in-situ test for mechanical characterization of soil-rock mixture used in an embankment dam[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 86: 317-322. doi: 10.1016/j.ijrmms.2015.04.001
      [3]
      刘新荣, 涂义亮, 王林枫, 等. 土石混合体的剪切面分形特征及强度产生机制[J]. 岩石力学与工程学报, 2017, 36(9): 2260-2274. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201709020.htm

      LIU Xin-rong, TU Yi-liang, WANG Lin-feng, FENG Hao, ZHONG Zu-liang, LEI Xiao-dan, WANG Lei. Fractal characteristics of shear failure surface and mechanism of strength generation of soil-rock aggregate[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(9): 2260-2274. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201709020.htm
      [4]
      吴帅峰, 蔡红, 魏迎奇, 等. 土石混合料剪切机理及抗剪强度分量特性研究[J]. 岩土工程学报, 2019, 41(增刊2): 230-234. doi: 10.11779/CJGE2019S2058

      WU Shuaifeng, CAI Hong, WEI Yingqi, et al. Shear mechanism and shear strength component characteristics of soil-stone mixtures[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 230-234. (in Chinese) doi: 10.11779/CJGE2019S2058
      [5]
      江强强, 徐杨青, 王浩. 不同含石量条件下土石混合体剪切变形特征的试验研究[J]. 工程地质学报, 2020, 28(5): 951-958. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202005003.htm

      JIANG Qiangqiang, XU Yangqing, WANG Hao. Research on shear deformation characteristic of soil-rock mixtures under different stone contents[J]. Journal of Engineering Geology, 2020, 28(5): 951-958. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202005003.htm
      [6]
      YAO Y, LI J, NI J, LIANG C, et al. Effects of gravel content and shape on shear behaviour of soil-rock mixture: Experiment and DEM modelling[J]. Computers and Geotechnics, 2022, 141: 1044762021.
      [7]
      涂义亮, 刘新荣, 任青阳, 等. 含石量和颗粒破碎对土石混合料强度的影响研究[J]. 岩土力学, 2020, 41(12): 3919-3928. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202012011.htm

      TU Yiliang, LIU Xinrong, REN Qingyang, et al. Effects of rock contents and particle breakage on strength characteristics of soil-rock aggregate[J]. Rock and Soil Mechanics, 2020, 41(12): 3919-3928. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202012011.htm
      [8]
      杨忠平, 赵亚龙, 胡元鑫, 等. 块石强度对土石混合料剪切特性的影响[J]. 岩石力学与工程学报, 2021, 40(4): 814-827. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202104015.htm

      YANG Zhongping, ZHAO Yalong, HU Yuanxin, et al. Effect of the strength of rock blocks on the shear characteristics of soil-rock mixtures[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(4): 814-827. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202104015.htm
      [9]
      金磊, 曾亚武, 张森. 块石含量及形状对胶结土石混合体力学性能影响的大型三轴试验[J]. 岩土力学, 2017, 38(1): 141-149. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201701019.htm

      JIN Lei, ZENG Ya-wu, ZHANG Sen. Large scale triaxial tests on effects of rock block proportion and shape on mechanical properties of cemented soil-rock mixture[J]. Rock and Soil Mechanics, 2017, 38(1): 141-149. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201701019.htm
      [10]
      夏加国, 胡瑞林, 祁生文, 等. 含超径颗粒土石混合体的大型三轴剪切试验研究[J]. 岩石力学与工程学报, 2017, 36(8): 2031-2039. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201708023.htm

      XIA Jia-guo, HU Rui-lin, QI Sheng-wen, et al. Large scale triaxial shear testing of soil rock mixtures containing oversized particles[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(8): 2031-2039. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201708023.htm
      [11]
      景宏君, 张延青, 顾行文, 等. 土石混合填料大型三轴剪切试验研究[J]. 西安科技大学学报, 2019, 39(2): 270-275. https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB201902013.htm

      JING Hongjun, ZHANG Yanqing, GU Xingwen, et al. Large-scale triaxial shear test of soil rock mixture[J]. Journal of Xi'an University of Science and Technology, 2019, 39(2): 270-275. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB201902013.htm
      [12]
      陶庆东, 何兆益, 贾颖. 基于大三轴试验的土石混合体强度特性与影响因素[J]. 科学技术与工程, 2019, 19(26): 310-318. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201926052.htm

      TAO Qing-dong, HE Zhao-yi, JIA Ying. Strength characteristics and influencing factors of soil-rock mixture based on large triaxial test[J]. Science Technology and Engineering, 2019, 19(26): 310-318. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201926052.htm
      [13]
      王涛, 刘斯宏, 宋迎俊, 孔维民. 基于骨架孔隙比的土石混合料强度变形特性[J]. 岩土力学, 2020, 41(9): 2973-2983. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202009014.htm

      WANG Tao, LIU Si-hong, SONG Ying-jun, KONG Wei-min. Strength and deformation characteristics of soil-rock mixtures using skeleton void ratio[J]. Rock and Soil Mechanics, 2020, 41(9): 2973-2983. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202009014.htm
      [14]
      胡世兴, 靳晓光, 孙国栋, 等. 土石混合体材料大型三轴试验及PFC-FLAC耦合仿真研究[J]. 岩石力学与工程学报, 2021, 40(增刊2): 3344-3356. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2021S2034.htm

      HU Shixing, JIN Xiaoguang, SUN Guodong, et al. Triaxial test and PFC-FLAC coupling simulation study on material parameters and deformation characteristics of soil-rock mixture[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(S2): 3344-3356. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2021S2034.htm
      [15]
      李浩民, 饶锡保, 江洎洧, 等. 单剪与常规三轴条件下土石混合体强度特性差异探讨[OL]. 长江科学院院报, 2022, https://kns.cnki.net/kcms/detail/42.1171.TV.20220401.1746.014.html.

      LI Haomin, RAO Xibao, JIANG Jiwei, et al. Discussion on the differences of strength properties of soil-rock mixture under simple shear and triaxial compression[OL]. Journal of Yangtze River Scientific Research Institute, 2022, https://kns.cnki.net/kcms/detail/42.1171.TV.20220401.1746.014.html. (in Chinese)
      [16]
      陈志波, 朱俊高. 一个基于砾质土的改进椭圆-抛物双屈服面模型[J]. 福州大学学报(自然科学版), 2016, 44(6): 874-880. https://www.cnki.com.cn/Article/CJFDTOTAL-FZDZ201606018.htm

      CHEN Zhibo, ZHU Jungao. A modified ellipse-parabola double yield surfaces model on gravelly soil[J]. Journal of Fuzhou University (Natural Science Edition), 2016, 44(6): 874-880. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FZDZ201606018.htm
      [17]
      BRITO A, MARANHA J R, CALDEIRA L M M S. A constitutive model for soil-rockfill mixtures[J]. Computers and Geotechnics, 2018, 95: 46-56.
      [18]
      SHI X S, ZHAO J, GAO Y. A homogenization-based state-dependent model for gap-graded granular materials with fine-dominated structure[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2021, 45(8): 1007-1028.
      [19]
      蔡正银, 钟启明, 何宁, 等. 堰塞体状态相关剪胀理论与坝体溃决演化规律研究构想[J]. 工程科学与技术, 2021, 53(6): 21-32. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202106002.htm

      CAI Zhengyin, ZHONG Qiming, HE Ning, et al. Research framework of the state-dependent dilatancy theory and breach evolution law of landslide dam[J]. Advanced Engineering Sciences, 2021, 53(6): 21-32. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202106002.htm
      [20]
      FANG H L, ZHENG H, ZHENG J. Micromechanics-based multimechanism bounding surface model for sands[J]. International Journal of Plasticity, 2017, 90: 242-266.
      [21]
      方火浪, 蔡云惠, 王文杰. 堆石料状态相关三维多重机制边界面模型[J]. 岩土工程学报, 2018, 40(12): 2164-2171. doi: 10.11779/CJGE201812002

      FANG Huolang, CAI Yunhui, WANG Wenjie. State-dependent 3D multi-mechanism bounding surface model for rockfills[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2164-2171. (in Chinese) doi: 10.11779/CJGE201812002
      [22]
      BAZANT Z P, OH B H. Microplane model for progressive fracture of concrete and rock[J]. Journal of Engineering Mechanics, ASCE, 1985, 111(4): 559-582.
      [23]
      MATSUOKA H, YAO Y P, SUN D A. The Cam-clay models revised by the SMP criterion[J]. Soils and Foundations, 1999, 39(1): 81-95.
      [24]
      WANG Z L, DAFALIAS Y F, SHEN C K. Bounding surface hypoplasticity model for sand[J]. Journal of Engineering Mechanics, ASCE, 1990, 116(5): 983-1001.
      [25]
      LI X S. A sand model with state-dependent dilatancy[J]. Géotechnique, 2002, 52(3): 173-86.
    • Other Related Supplements

    • Cited by

      Periodical cited type(25)

      1. 王朋飞,祝壮,孙中光,曲越,张衡,李培现. 长壁工作面开采时间间隔对倾向主断面地表沉陷的影响研究. 采矿与安全工程学报. 2025(02): 282-293 .
      2. 丁星丞,李培现,康新亮,王明亮,张涛,郝登程. 融合概率积分法与SBAS-InSAR的开采沉陷计算方法. 矿业科学学报. 2025(01): 48-56 .
      3. 韩春鹏,杜超,史梁,祖发金,柴晓鹤. 老采空区地表沉降预测合理监测模式分析. 工程勘察. 2024(02): 48-53 .
      4. 张梦华. 羊东矿保护煤柱开采地表变形研究. 煤炭与化工. 2024(03): 27-29+33 .
      5. 郭庆彪,余庆,郑美楠,罗锦. 测线布设形态与测点缺失对采煤沉陷预计参数反演的影响. 煤田地质与勘探. 2024(06): 57-68 .
      6. 孙述海,王文斌,齐树明,姜佃卿,孙玥,岳伟佳. 新阳煤矿三、四采区地表移动变形规律研究. 资源信息与工程. 2024(04): 59-63 .
      7. 张玮,陈迪,袁利伟,郭庆,李晨洋,李彧,李袁松,李春辉,陈明辉. 基于概率积分法的露地联采地表移动影响范围划定分析. 采矿技术. 2024(05): 12-20 .
      8. 孙志豪,徐良骥,刘潇鹏. 一种基于分段加权赋参的厚松散层矿区沉陷预计方法. 金属矿山. 2024(11): 132-141 .
      9. 王文才,吴周康,高小雷,王鹏. 非充分采动条件下地表移动概率积分法预测. 煤炭技术. 2023(06): 1-4 .
      10. 杨晓玉,朱晓峻. 基于稳健遗传算法的矿山开采沉陷预计参数反演. 金属矿山. 2023(08): 237-244 .
      11. 滕永佳,阎跃观,郭伟,姜岩,胡耀东. 不规则工作面开采地表沉陷线积分预计方法. 矿业科学学报. 2022(01): 82-88 .
      12. 胡辉东,李贤庆,陈纯芳,刘洋,张博翔. 鄂尔多斯盆地杭锦旗地区J58井区盒一段甜点储层特征及主控因素. 矿业科学学报. 2022(01): 71-88 .
      13. 程桦,张亮亮,姚直书,彭世龙,郭龙辉. 厚松散层薄基岩非对称开采井筒偏斜机理. 煤炭学报. 2022(01): 102-114 .
      14. 张劲满,阎跃观,李杰卫,徐瑞瑞,王芷馨,张坤,岳彩亚. 概率积分预计参数的ENN优化算法. 金属矿山. 2022(05): 170-176 .
      15. 周佳薇,吴鑫,刘峰. 煤矿综放开采地表移动规律. 测绘技术装备. 2022(02): 130-134 .
      16. 黄金中,王磊,李靖宇,蒋创,滕超群,李忠,李世保. 群智能优化算法反演概率积分参数的性能比较与分析. 金属矿山. 2022(08): 173-181 .
      17. 丁一,邓念东,姚婷,刘东海,尚慧. 地质采矿条件对铁路路基沉陷预测影响研究. 煤炭科学技术. 2022(07): 135-145 .
      18. 李勇,贺鑫,李培现,王炳,杨中辉,张芷祺,杨可明. 煤矿地表塌陷区天眼巡查监测系统设计及应用. 煤炭工程. 2022(12): 157-163 .
      19. 叶伟,徐良骥,张坤. 概率积分法参数反演的SAAFC模型. 金属矿山. 2021(04): 139-148 .
      20. 李靖宇,王磊,朱尚军,滕超群,江克贵. 基于狼群算法的概率积分法模型参数反演方法研究. 中国矿业. 2020(10): 102-109 .
      21. 陈兴达,余学祥,池深深,汪涛,陈卫卫. 基于多种群遗传算法的概率积分法参数反演. 煤矿安全. 2020(11): 50-54+60 .
      22. 曲相屹,李学良. 长壁开采工作面地表岩移参数求取方法分析. 水力采煤与管道运输. 2019(02): 39-41 .
      23. 李学良. 建筑物开采损害鉴定方法评价及应用. 矿山测量. 2019(04): 9-12 .
      24. 袁鑫,王远坚,郑健,李鹏宇,胡重戎,姜岩. 基于弹性薄板理论的地表下沉预计模型. 金属矿山. 2019(10): 37-41 .
      25. 黄晖,池深深,韩必武,刘可胜. 基于PCA-BP神经网络的概率积分法参数算法研究. 黑龙江科学. 2019(24): 1-5 .

      Other cited types(17)

    Catalog

      Article views PDF downloads Cited by(42)
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return