• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CHAI Shaofeng, WANG Lanmin, WANG Ping, GUO Haitao, XIA Xiaoyu, CHE Gaofeng, WANG Huijuan. Shaking table tests on sliding characteristics and mechanism of liquefaction landslide of low-angle loess deposit in Shibeiyuan[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2565-2574. DOI: 10.11779/CJGE20221123
Citation: CHAI Shaofeng, WANG Lanmin, WANG Ping, GUO Haitao, XIA Xiaoyu, CHE Gaofeng, WANG Huijuan. Shaking table tests on sliding characteristics and mechanism of liquefaction landslide of low-angle loess deposit in Shibeiyuan[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2565-2574. DOI: 10.11779/CJGE20221123

Shaking table tests on sliding characteristics and mechanism of liquefaction landslide of low-angle loess deposit in Shibeiyuan

More Information
  • Received Date: September 12, 2022
  • Available Online: April 23, 2023
  • Based on the field investigation, exploration and laboratory tests, the initiation mechanism of low-angle liquefaction sliding, geomorphologic formation characteristics, instability process and sliding mechanism of Shibeiyuan in Ningxia during the 1920 Haiyuan earthquake are studied by shaking table model tests. The results show that the low-angle liquefaction sliding of Shibeiyuan is the liquefaction one of the saturated sandy loess formation caused by the special stratum structure and high-intensity ground motion of the 1920 Haiyuan earthquake. The liquefaction sliding process includes three stages: initiation of liquefaction stage, ejected acceleration stage, flow slipping and accumulation stage. Finally, the liquefaction sliding is characterized by high-speed and long-distance flows. The results show that the initiation of liquefaction is the trigger mechanism of large-scale sliding. The seismic acceleration amplification at the peak value and the inertial ejection are the driving mechanism of liquefaction sliding at high speed and long distance. The special stratigraphic structure of the lower permeability aquifer at the bottom and the saturated sandy loess layer in the middle is the physical basis for the formation of large-scale liquefaction sliding with low angle. The difference of liquefied degree leads to that of transport velocity of soils in different layers and the stretching and pushing action, which is the reason for the wavy geomorphology with peaks and valleys. The research results have important reference value for the recognition of earthquake liquefaction and sliding disaster mechanism of low-angle loess stratum under strong earthquakes and the innovation of landslide prevention and control technology.
  • [1]
    白铭学, 张苏民. 高烈度地震时黄土地层的液化移动[J]. 工程勘察, 1990, 18(6): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC199006000.htm

    BAI Mingxue, ZHANG Sumin. Landslide induced by liquefaction of loessial soil during earthquake of high intensity[J]. Geotechnical Investigation and Surveying, 1990, 18(6): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC199006000.htm
    [2]
    王兰民. 黄土动力学[M]. 北京: 地震出版社, 2003.

    WANG Lanmin. Loess Dynamics[M]. Beijing: Seismological Press, 2003. (in Chinese)
    [3]
    王兰民. 黄土地层大规模地震液化滑移的机理与风险评估[J]. 岩土工程学报, 2020, 42(1): 1-19. doi: 10.11779/CJGE202001001

    WANG Lanmin. Mechanism and risk evaluation of sliding flow triggered by liquefaction of loess deposit during earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 1-19. (in Chinese) doi: 10.11779/CJGE202001001
    [4]
    王谦, 王峻, 王兰民, 等. 石碑塬饱和黄土地震液化机制探讨[J]. 岩石力学与工程学报, 2014, 33(增刊2): 4168-4173. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S2097.htm

    WANG Qian, WANG Jun, WANG Lanmin, et al. Discussion on mechanism of seismic liquefaction of saturation loess in Shibei tableland, Guyuan city[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S2): 4168-4173. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S2097.htm
    [5]
    马星宇, 王兰民, 王谦, 等. 饱和黄土液化流动性试验研究[J]. 岩土工程学报, 2021, 43(增刊1): 161-165. doi: 10.11779/CJGE2021S1029

    MA Xingyu, WANG Lanmin, WANG Qian, et al. Experimental study on liquefaction fluidity of saturated loess[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 161-165. (in Chinese) doi: 10.11779/CJGE2021S1029
    [6]
    张晓超, 黄润秋, 许模, 等. 石碑塬滑坡黄土液化特征及其影响因素研究[J]. 岩土力学, 2014, 35(3): 801-810. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201403032.htm

    ZHANG Xiaochao, HUANG Runqiu, XU Mo, et al. Loess liquefaction characteristics and its influential factors of Shibeiyuan landslide[J]. Rock and Soil Mechanics, 2014, 35(3): 801-810. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201403032.htm
    [7]
    马星宇, 王兰民, 钟秀梅, 等. 地震诱发石碑塬黄土地层液化滑移距离研究[J]. 地震工程学报, 2020, 42(6): 1674-1682. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ202006043.htm

    MA Xingyu, WANG Lanmin, ZHONG Xiumei, et al. Slippage distance of loess deposit triggered by earthquake-induced liquefaction in Shibeiyuan area[J]. China Earthquake Engineering Journal, 2020, 42(6): 1674-1682. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ202006043.htm
    [8]
    张晓超. 地震诱发石碑塬低角度黄土滑坡形成机理的试验研究[D]. 成都: 成都理工大学, 2015.

    ZHANG Xiaochao. Experimental Stduy on Mechanism of Shibeiyuan Loess Landslide Triggered by Earthquake[D]. Chengdu: Chengdu University of Technology, 2015. (in Chinese)
    [9]
    高九龙. 黄土低角度边坡液化滑移机理试验研究: 以石碑塬滑坡为例[D]. 西安: 西北大学, 2021.

    GAO Jiulong. Experimental Study on Liquefaction Slip Mechanism of Loess Low-Angle Slope[D]. Xi'an: Northwest University, 2021. (in Chinese)
    [10]
    刘魁. 固原市原州区地震诱发黄土滑坡形成机理研究[D]. 西安: 长安大学, 2012.

    LIU Kui. Study on the Mechanism of Loess Landslide Induced by Earthquake in Yuanzhou District Guyuan City[D]. Xi'an: Changan University, 2012. (in Chinese)
    [11]
    王家鼎, 白铭学, 肖树芳. 强震作用下低角度黄土斜坡滑移的复合机理研究[J]. 岩土工程学报, 2001, 23(4): 445-449. http://www.cgejournal.com/cn/article/id/10759

    WANG Jiading, BAI Mingxue, XIAO Shufang. A study on compound mechanism of earthquake-related sliding displacements on gently inclined loess slope[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(4): 445-449. (in Chinese) http://www.cgejournal.com/cn/article/id/10759
    [12]
    白铭学, 王增光. 宁夏黄土高原区低角度滑移研究报告[R]. 宁夏: 宁夏回族自治区地震局, 1987.

    BAI Mingxue, WANG Zengguang. Study on Low Angle Slip in Loess Plateau of Ningxia[R]. Ningxia: Earthquake Agency of Ningxia Hui Autonomous Region, 1987. (in Chinese)
    [13]
    郭海涛, 许世阳, 蒲小武, 等. 海原地震石碑塬液化滑移地表特征形成机制探讨[J]. 地震工程学报, 2020, 42(5): 1159-1164. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ202005016.htm

    GUO Haitao, XU Shiyang, PU Xiaowu, et al. Formation mechanism of surface characteristics of liquefaction-triggered sliding flow in Haiyuan earthquake Shibei tableland[J]. China Earthquake Engineering Journal, 2020, 42(5): 1159-1164. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ202005016.htm
    [14]
    柴少峰, 王平, 郭海涛, 等. 大型振动台试验土质边坡模型材料相似性及评价[J]. 地震工程学报, 2019, 41(5): 1308-1315. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201905027.htm

    CHAI Shaofeng, WANG Ping, GUO Haitao, et al. Model material similarity and associated evaluation for soil slopes in a large-scale shaking table test[J]. China Earthquake Engineering Journal, 2019, 41(5): 1308-1315. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201905027.htm

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return