• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
GU Yingdong, CHENG Qing, TANG Chaosheng, SHI Bin. Desiccation cracking behavior of vegetated soil with various dry densities[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2420-2428. DOI: 10.11779/CJGE20221037
Citation: GU Yingdong, CHENG Qing, TANG Chaosheng, SHI Bin. Desiccation cracking behavior of vegetated soil with various dry densities[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2420-2428. DOI: 10.11779/CJGE20221037

Desiccation cracking behavior of vegetated soil with various dry densities

More Information
  • Received Date: August 21, 2022
  • Available Online: November 05, 2023
  • Desiccation cracking in vegetated slopes is a common phenomenon. In order to investigate the desiccation cracking characteristics of a vegetated soil, a series of desiccation tests are carried out in this study. The vegetated and bare soil groups with four different dry densities (1.3, 1.4, 1.5, 1.6 g/cm3) are selected. The weight of each soil sample is regularly measured, and the development of surface cracks is monitored. A self-developed system CIAS is adopted to quantitatively analyze the surface crack pattern during the drying process. The experimental results show that: (1) The evapotranspiration rate of the vegetation soil decreases with the increase in the dry density. (2) Compared with the bare soil, the vegetated soil sample has a slower water loss rate and a smaller critical water content under a certain dry density. (3) The dry density has a significant influence on the desiccation cracking behavior of vegetated soils. The larger the dry density, the larger the water content corresponding to the formation of the crack network pattern. (4) With a given dry density, the vegetated soil has a smaller surface crack ratio and an average crack width, but a larger crack density compared with the bare soil.
  • [1]
    吴宏伟. 大气-植被-土体相互作用: 理论与机理[J]. 岩土工程学报, 2017, 39(1): 1-47. doi: 10.11779/CJGE201701001

    NG W W. Atmosphere- plant-soil interactions: theories and mechanisms[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 1-47. (in Chinese) doi: 10.11779/CJGE201701001
    [2]
    BORDOLOI S, NI J J, NG C W W. Soil desiccation cracking and its characterization in vegetated soil: a perspective review[J]. Science of the Total Environment, 2020, 729: 138760. doi: 10.1016/j.scitotenv.2020.138760
    [3]
    殷宗泽, 徐彬. 反映裂隙影响的膨胀土边坡稳定性分析[J]. 岩土工程学报, 2011, 33(3): 454-459. http://www.cgejournal.com/cn/article/id/13962

    YIN Zongze, XU Bin. Slope stability of expansive soil under fissure influence[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(3): 454-459. (in Chinese) http://www.cgejournal.com/cn/article/id/13962
    [4]
    TANG C S, SHI B, LIU C, et al. Influencing factors of geometrical structure of surface shrinkage cracks in clayey soils[J]. Engineering Geology, 2008, 101(3/4): 204-217.
    [5]
    骆赵刚, 汪时机, 张继伟, 等. 膨胀土裂隙发育的厚度效应试验研究[J]. 岩土工程学报, 2020, 42(10): 1922-1930. doi: 10.11779/CJGE202010018

    LUO Zhaogang, WANG Shiji, ZHANG Jiwei, et al. Thickness effect on crack evolution of expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1922-1930. (in Chinese) doi: 10.11779/CJGE202010018
    [6]
    TIAN B G, CHENG Q, TANG C S, et al. Effects of compaction state on desiccation cracking behaviour of a clayey soil subjected to wetting-drying cycles[J]. Engineering Geology, 2022, 302: 106650. doi: 10.1016/j.enggeo.2022.106650
    [7]
    MITCHELL J K. Fundamentals of Soil Behavior[M]. New York: Wiley: 1976.
    [8]
    CHENG Q, TANG C S, ZENG H, et al. Effects of microstructure on desiccation cracking of a compacted soil[J]. Engineering Geology, 2020, 265: 105418. doi: 10.1016/j.enggeo.2019.105418
    [9]
    刘观仕, 陈永贵, 曾宪云, 等. 环境湿度与温度对压实膨胀土裂隙发育影响试验研究[J]. 岩土工程学报, 2020, 42(2): 260-268. doi: 10.11779/CJGE202002007

    LIU Guanshi, CHEN Yonggui, ZENG Xianyun, et al. Effects of ambient air humidity and temperature on crack development of compacted expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 260-268. (in Chinese) doi: 10.11779/CJGE202002007
    [10]
    曾浩, 唐朝生, 刘昌黎, 等. 控制厚度条件下土体干缩开裂的界面摩擦效应[J]. 岩土工程学报, 2019, 41(3): 544-553. doi: 10.11779/CJGE201903017

    ZENG Hao, TANG Chaosheng, LIU Changli, et al. Effects of boundary friction and layer thickness on desiccation cracking behaviors of soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 544-553. (in Chinese) doi: 10.11779/CJGE201903017
    [11]
    WAN Y, WU C X, XUE Q, et al. Effects of plastic contamination on water evaporation and desiccation cracking in soil[J]. Science of the Total Environment, 2019, 654: 576-582. doi: 10.1016/j.scitotenv.2018.11.123
    [12]
    陈宾, 周乐意, 赵延林, 等. 干湿循环条件下红砂岩软弱夹层微结构与剪切强度的关联性[J]. 岩土力学, 2018, 39(5): 1633-1642. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201805011.htm

    CHEN Bin, ZHOU Leyi, ZHAO Yanlin, et al. Relationship between microstructure and shear strength of weak interlayer of red sandstone under dry and wet cycles[J]. Rock and Soil Mechanics, 2018, 39(5): 1633-1642. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201805011.htm
    [13]
    唐朝生, 施斌, 顾凯. 土中水分的蒸发过程试验研究[J]. 工程地质学报, 2011, 19(6): 875-881. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201106011.htm

    TANG Chaosheng, SHI Bin, GU Kai. Experimental investigation on evaporation process of water in soil during drying[J]. Journal of Engineering Geology, 2011, 19(6): 875-881. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201106011.htm
    [14]
    李勇, 黄小芳, 丁万隆. 根系分泌物及其对植物根际土壤微生态环境的影响[J]. 华北农学报, 2008, 23(增刊1): 182-186. https://www.cnki.com.cn/Article/CJFDTOTAL-HBNB2008S1043.htm

    LI Yong, HUANG Xiaofang, DING Wanlong. Root exudates and their effects on plant rhizosphere soil micro-ecology environment[J]. Acta Agriculturae Boreali- Sinica, 2008, 23(S1): 182-186. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HBNB2008S1043.htm
    [15]
    AROCA R, PORCEL R, RUIZ-LOZANO J M. Regulation of root water uptake under abiotic stress conditions[J]. Journal of Experimental Botany, 2012, 63(1): 43-57.
    [16]
    ANGELIKA M, BOAMFA ELENA I, LAARHOVEN LUCAS J J, et al. Organ-specific analysis of the anaerobic primary metabolism in rice and wheat seedlings. I: dark ethanol production is dominated by the shoots[J]. Planta, 2006, 225(1): 103-114.
    [17]
    张治宏, 杨诗卡, 韩超, 等. 环境胁迫对水生植物根系分泌小分子量有机酸(LMWOAs)的影响特征[J]. 湖泊科学, 2020, 32(2): 462-471. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX202002016.htm

    ZHANG Zhihong, YANG Shika, HAN Chao, et al. Effects of environmental stress on characteristics of low molecular weight organic acids secreted by macrophyte roots[J]. Journal of Lake Sciences, 2020, 32(2): 462-471. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX202002016.htm
    [18]
    张少文, 张玻华, 刘洁颖, 等. 盐分对土壤蒸发影响的试验及其数值模拟[J]. 灌溉排水学报, 2015, 34(5): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS201505001.htm

    ZHANG Shaowen, ZHANG Bohua, LIU Jieying, et al. Effect of salinity on soil evaporation and its simulation[J]. Journal of Irrigation and Drainage, 2015, 34(5): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS201505001.htm
    [19]
    DELAGE P, AUDIGUIER M, CUI Y, et al. Microstructure of a compacted silt[J]. Canadian Geotechnical Journal, 1996, 33: 150-158.
    [20]
    徐华, 袁海莉, 王歆宇, 等. 根系形态和层次结构对根土复合体力学特性影响研究[J]. 岩土工程学报, 2022, 44(5): 926-935. doi: 10.11779/CJGE202205016

    XU Hua, YUAN Haili, WANG Xinyu, et al. Influences of morphology and hierarchy of roots on mechanical characteristics of root-soil composites[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 926-935. (in Chinese) doi: 10.11779/CJGE202205016
    [21]
    郑俊杰, 鲁燕儿, 陈保国. 拉压模量不同的剪胀土体中的球孔扩张问题[J]. 岩土工程学报, 2009, 31(5): 675-680. http://www.cgejournal.com/cn/article/id/13242

    ZHENG Junjie, LU Yaner, CHEN Baoguo. Spherical cavity expansion in dilatant soils with different tension and compression moduli[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(5): 675-680. (in Chinese) http://www.cgejournal.com/cn/article/id/13242
    [22]
    WIJAYA M, LEONG E C. Modelling the effect of density on the unimodal soil-water characteristic curve[J]. Géotechnique, 2017, 67(7): 637-645.
    [23]
    NG C W W, LEUNG A K, WOON K X. Effects of soil density on grass-induced suction distributions in compacted soil subjected to rainfall[J]. Canadian Geotechnical Journal, 2014, 51(3): 311-321.
  • Cited by

    Periodical cited type(11)

    1. 郭文远,李世民,王志岗,高涛,陶连金,谢霖,刘建功,刘华南. 正断层错动作用下浅埋地铁隧道受力分析方法及抗断设计研究. 振动与冲击. 2025(01): 252-261+297 .
    2. 王浩鱇,申玉生,潘笑海,常铭宇,张昕阳,粟威. 强震区穿越多破裂面破碎带隧道动力特性试验研究. 现代隧道技术. 2025(01): 212-220+230 .
    3. 柳伟,汪过兵. 黏弹性四参数地基上两跨连续修正Timoshenko梁的横向自振特性分析. 振动工程学报. 2025(03): 604-611 .
    4. 王峰. 穿越断裂带隧道地震响应影响机制研究. 中国铁路. 2025(04): 58-65 .
    5. 王志岗,陶连金,石城,史明,刘建功. 逆断层错动作用下双仓管廊结构力学特性和抗断设计研究. 土木工程学报. 2024(07): 37-50 .
    6. 翟之阳,王春瑶,路平. 地震作用下隧道不同位置单一及组合渗漏规律研究. 安徽建筑. 2024(09): 153-157 .
    7. 张治国,冯家伟,朱正国,赵其华,孙苗苗. 断层错动下非连续管道的力学响应分析. 岩土力学. 2024(11): 3221-3234 .
    8. 王天强,耿萍,何川,王琦. 穿越活动断裂带螺旋隧道抗错性能模型试验研究. 岩石力学与工程学报. 2024(11): 2738-2752 .
    9. 张君臣,李伟平,晏启祥,张伟列,孙明辉,陈文宇. 含有空心榫的盾构隧道环缝接头柔性特征研究. 土木工程学报. 2024(12): 104-117 .
    10. 王综仕,韩现民,徐孟起,王为鑫. 断层错动-地震不同时序作用对隧道的影响研究. 石家庄铁道大学学报(自然科学版). 2024(04): 45-50+124 .
    11. 朱合华,禹海涛,韩富强,卫一博,袁勇. 穿越活动断层隧道抗震韧性设计理念与关键问题. 中国公路学报. 2023(11): 193-204 .

    Other cited types(5)

Catalog

    Article views (448) PDF downloads (147) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return