WANG Changhong, WU Zhaoxin, WANG Kun, TANG Daofei, MA Chengtao. Stochastic mechanics-based Bayesian method for calibrating geotechnical parameters of Shanghai deep soft clay using CPTU data[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 75-84. DOI: 10.11779/CJGE20211494
    Citation: WANG Changhong, WU Zhaoxin, WANG Kun, TANG Daofei, MA Chengtao. Stochastic mechanics-based Bayesian method for calibrating geotechnical parameters of Shanghai deep soft clay using CPTU data[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 75-84. DOI: 10.11779/CJGE20211494

    Stochastic mechanics-based Bayesian method for calibrating geotechnical parameters of Shanghai deep soft clay using CPTU data

    More Information
    • Received Date: December 09, 2021
    • Available Online: February 03, 2023
    • Published Date: December 09, 2021
    • The construction of urban deep underground engineering requires scientific calculation. The reasonable constitutive model and accurate geotechnical parameters are the most important support for soil mechanics. The modified Cam-clay (MCC) model is a simple one as its constants are simple and intuitive, and is widely used in geotechnical engineering. However, it's different to get precise parameters in deep soft clay by the indoor tests due to sampling disturbance, test error and other unavoidable factors. Considering the prior information, laboratory test data, and piezocone penetration test (CPTU) data, the key geotechnical parameters are treated as random variables, the stochastic mechanics-Bayesian method is proposed to calibrate the key geotechnical parameters of the deep soil layers, such as the critical state stress ratio, compression coefficient, rebound coefficient, and overconsolidation ratio. Based on the Suzhou River deep drainage and storage pipeline system in Shanghai and the foundation pit of Yunling, the deep soil layer ⑧ at the base plate is taken as the research object. Firstly, the mechanical conversion between the CPTU data (i.e., cone tip resistance, lateral friction stress and pore pressure) and the limit expansion pressure of cylindrical cavity is derived in the MCC model. The mechanical conversion for the CPTU data is verified by using the test data from Bothkennar geotechnical test site in Scotland. Secondly, the quadratic response surface without being crossed between the key geotechnical parameters and the CPTU data can be established by regression. The Markov-chain Monte Carlo (MCMC) sampling method will obtain the posterior distributions of the key geotechnical parameters. Finally, The numercial calculation for the foundation pit is carried out with the mean values of the posterior geotechnical parameters. The results show that the uncertainties of the geotechnical parameters are significantly reduced, and the results obtained by the numerical simulation of the foundation pit using the mean values of geotechnical parameters are closer to the monitoring values. It is proved that the stochastic mechanics- based Bayesian method is effective and efficient.
    • [1]
      DUAN W, CHANDRA C S S, CAI G J, et al. Empirical correlations of soil parameters based on piezocone penetration tests (CPTU) for Hong Kong-Zhuhai-Macau Bridge (HZMB) project[J]. Transportation Geotechnics, 2021, 30: 100605. doi: 10.1016/j.trgeo.2021.100605
      [2]
      LIU X Y, CAI G J, LIU L L, et al. Improved p-y curve models for large diameter and super-long cast-in-place piles using piezocone penetration test data[J]. Computers and Geotechnics, 2021, 130: 103911. doi: 10.1016/j.compgeo.2020.103911
      [3]
      SEDMAK V A. Expansion of cavities in infinite soil mass[J]. Journal of the Soil Mechanics and Foundations Division, 1972, 98(3): 265-290. doi: 10.1061/JSFEAQ.0001740
      [4]
      李镜培, 李林, 孙德安, 等. 饱和软土地层静压沉桩阻力理论研究[J]. 岩土工程学报, 2015, 37(8): 1454-1461. doi: 10.11779/CJGE201508014

      LI Jingpei, LI Lin, SUN De'an, et al. Theoretical study on sinking resistance of jacked piles in saturated soft clay[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1454-1461. (in Chinese) doi: 10.11779/CJGE201508014
      [5]
      郑金辉, 齐昌广, 王新泉, 等. 考虑砂土颗粒破碎的柱孔扩张问题弹塑性分析[J]. 岩土工程学报, 2019, 41(11): 2156-2164. doi: 10.11779/CJGE201911023

      ZHENG Jinhui, QI Changguang, WANG Xinquan, et al. Elasto-plastic analysis of cylindrical cavity expansion considering particle breakage of sand[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2156-2164. (in Chinese) doi: 10.11779/CJGE201911023
      [6]
      武孝天. 搅拌桩和管桩施工的挤土效应及其控制措施研究[D]. 上海: 上海交通大学, 2020.

      WU Xiaotian. Study on the Squeezing Effect and its Control Measures for Mixing Piles and Pipe Piles Construction[D]. Shanghai: Shanghai Jiao Tong University, 2020. (in Chinese)
      [7]
      ROBERTSON P K. Cone penetration test (CPT)-based soil behaviour type (SBT) classification system—an update[J]. Canadian Geotechnical Journal, 2016, 53(12): 1910-1927. doi: 10.1139/cgj-2016-0044
      [8]
      蔡国军, 刘松玉, 童立元, 等. 基于静力触探测试的国内外砂土液化判别方法[J]. 岩石力学与工程学报, 2008, 27(5): 1019-1027. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200805021.htm

      CAI Guojun, LIU Songyu, TONG Liyuan, et al. Evaluation of liquefaction of sandy soils based on cone penetration test[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(5): 1019-1027. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200805021.htm
      [9]
      刘松玉, 郭易木, 张国柱, 等. 热传导CPT探头的研发与应用[J]. 岩土工程学报, 2020, 42(2): 354-361. doi: 10.11779/CJGE202002017

      LIU Songyu, GUO Yimu, ZHANG Guozhu, et al. Development and application of heat conduction CPT probe[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 354-361. (in Chinese) doi: 10.11779/CJGE202002017
      [10]
      蒋水华, 冯泽文, 刘贤, 等. 基于自适应贝叶斯更新方法的岩土参数概率分布推断[J]. 岩土力学, 2020, 41(1): 325-335. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202001038.htm

      JIANG Shuihua, FENG Zewen, LIU Xian, et al. Inference of probability distributions of geotechnical parameters using adaptive Bayesian updating approach[J]. Rock and Soil Mechanics, 2020, 41(1): 325-335. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202001038.htm
      [11]
      郑栋, 黄劲松, 李典庆. 基于多源信息融合的路堤沉降预测方法[J]. 岩土力学, 2019, 40(2): 709-719, 727. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902034.htm

      ZHENG Dong, HUANG Jinsong, LI Dianqing. An approach for predicting embankment settlement by integrating multi-source information[J]. Rock and Soil Mechanics, 2019, 40(2): 709-719, 727. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902034.htm
      [12]
      WANG C H, OSORIO-MURILLO C A, ZHU H H, et al. Bayesian approach for calibrating transformation model from spatially varied CPT data to regular geotechnical parameter[J]. Computers and Geotechnics, 2017, 85: 262-273.
      [13]
      CHING J, PHOON K. Constructing site-specific multivariate probability distribution model by Bayesian machine learning[J]. ASCE Journal of Engineering Mechanics, 2019, 145(01): 04018126.
      [14]
      ROSCOE K H, BURLAND J B. On the Generalized Stress-strain Behavior of "Wet" Clay[C]// In Engineering plasticity. Cambridge: Cambridge University Press, 1968, 535-609.
      [15]
      CHEN S L, ABOUSLEIMAN Y. Exact undrained elasto-plastic solution for cylindrical cavity expansion in modified Cam Clay soil[J]. Geotechnique, 2012, 62(5): 447-456.
      [16]
      CHEN S L, ABOUSLEIMAN Y N. Exact drained solution for cylindrical cavity expansion in modified Cam-clay soil[J]. Géotechnique, 2013, 63(6): 510-517.
      [17]
      MO P Q, GAO X W, YANG W B, et al. A cavity expansion-based solution for interpretation of CPTu data in soils under partially drained conditions[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2020, 44(7): 1053-1076.
      [18]
      孔压静力触探技术规程: DB32/T 2977—2016[S]. 南京: 江苏省质量技术监督局, 2016.

      Technical Specification for Piezocone Penetration Test: DB32/T 2977—2016[S]. Nanjing: Jiangsu Provincial Bureau of Quality and Technical Supervision, 2016. (in Chinese)
      [19]
      HIGHT D W, BOND A J, LEGGE J D. Characterization of the Bothkennaar clay: an overview[J]. Géotechnique, 1992, 42(2): 303-347.
      [20]
      韦来生. 贝叶斯统计[M]. 北京: 高等教育出版社, 2016.

      WEI Laisheng. Bayesian Statistics[M]. Beijing: Higher Education Press, 2016. (in Chinese)
      [21]
      RUBIN Y, CHEN X Y, MURAKAMI H, et al. A Bayesian approach for inverse modeling, data assimilation, and conditional simulation of spatial random fields[J]. Water Resources Research, 2010, 46(10): 2009WR008799.
      [22]
      武朝军. 上海浅部土层沉积环境及其物理力学性质[D]. 上海: 上海交通大学, 2016.

      WU Zhaojun. Depositional Environment and Geotechnical Properties for the Upper Shanghai Clays[D]. Shanghai: Shanghai Jiao Tong University, 2016. (in Chinese)
      [23]
      刘丽斌. 上海深层黏土的物理性质、超固结特性及本构模拟[D]. 上海: 上海交通大学, 2019.

      LIU Libin. Physical Properties, Over-Consolidation and Constitutive Modeling of Shanghai Deep Clays[D]. Shanghai: Shanghai Jiao Tong University, 2019. (in Chinese)
      [24]
      何为, 薛卫东, 唐斌. 优化试验设计方法及数据分析[M]. 北京: 化学工业出版社, 2012.

      HE Wei, XUE Weidong, TANG Bin. Optimization Design Method and Data Analysis[M]. Beijing: Chemical Industry Press, 2012. (in Chinese)
      [25]
      XU Z H, LI J, WENG Q P, et al. Analysis method of ultra-deep circular excavation and its application[J]. Construction Technology, 2022, 51(1): 13-20.
    • Related Articles

      [1]LIU Xianwei, CHEN Su, LI Xiaojun, FU Lei, HU Jinjun, SUN Hao. Characteristics of marine site based on HVSR dynamic clustering method[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 213-220. DOI: 10.11779/CJGE20211449
      [2]WANG Jun-jie, FENG Deng, CHAI He-jun, LIU Yun-fei. Dominant discontinuities based on stereographic projection and K-means clustering algorithm[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 74-81. DOI: 10.11779/CJGE201801006
      [3]WU Hong-gang, MA Hui-min, ZHANG Hong-li. Evaluation of subgrade stability of mountainous highway exhibition based on interaction matrix[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 202-206.
      [4]LI Dian-qing, TANG Xiao-song, ZHOU Chuang-bing. Reliability analysis of slope stability involving correlated non-normal variables using knowledge-based clustered partitioning method[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 875.
      [5]Prediction of rock burst based on ant colony clustering algorithm[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6).
      [6]Pedigree cluster method to evaluate geometrical anisotropy of soil micro-structure[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1).
      [7]HU Houtian, WANG Anfu, LIU Yongjiang, ZHAO Xiaoyan. Stability of granite soil high slopes[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(6): 824-828.
      [8]CAI Guojun, LIU Songyu, TONG Liyuan, DU Guangyin. Soil classification using CPTU data based upon cluster analysis theory[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(3): 416-424.
      [9]FENG Xinglong, WANG Liguan, BI Lin, JIA Mingtao, GONG Yuanxiang. Collapsibility of orebody based on Mathews stability graph approach[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(4): 600-604.
      [10]Xu Linrong, Hua Zukun, Yang Canwen. Investigation and analysis of performance of reinforced steep slope using fuzzy cluster[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(4): 475-480.
    • Cited by

      Periodical cited type(8)

      1. 刘华仁,佟大威,余佳,苏哲. 基于模糊聚类和随机子空间的高土石坝模态参数自动识别. 水力发电学报. 2025(02): 107-115 .
      2. 蔡正银,范开放,朱洵. 基于现场试验的海上筒型基础风电结构动力特性研究. 岩土工程学报. 2025(03): 443-452 . 本站查看
      3. 张翰,张锋,谭尧升,姚孟迪,邓检华. 基于运行时模态分析和代理模型的大坝力学参数反演方法. 粉煤灰综合利用. 2025(01): 163-166 .
      4. 张晓明,谭蓉,贺育明,强继峰,孙森林,张朝军,梁刚. 基于时频域信号特征的输电塔运行模态分析. 电网与清洁能源. 2025(03): 46-52+59 .
      5. 王晓澎,张浩,李欣,肖森,刘璇. 基于随机子空间法的滑动轴承运行模态参数识别. 噪声与振动控制. 2024(01): 126-133 .
      6. 樊圆,卢文胜,虞终军,任祥香. 多次地震作用下高层建筑结构动力特性识别和响应分析. 建筑结构学报. 2023(01): 225-234 .
      7. 翟世龙,刘萍,黄静,艾萨·伊斯马伊力,毛玉剑. 基于大坝地震反应台阵的土石坝模态参数识别. 内陆地震. 2023(04): 353-361 .
      8. 黄嘉思,徐文城,段元锋,章红梅. 基于随机子空间方法的向量式有限元索网模型模态识别. 结构工程师. 2022(06): 1-6 .

      Other cited types(7)

    Catalog

      Article views (313) PDF downloads (86) Cited by(15)
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return