ZHAO Wen-he, YANG Xiu-juan, WANG Bao-zhong, FAN Heng-hui, MENG Min-qiang, ZHU Zhen. Laws of water migration and settlement at interface in loess filled areas under rainfalls[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1710-1720. DOI: 10.11779/CJGE202209016
    Citation: ZHAO Wen-he, YANG Xiu-juan, WANG Bao-zhong, FAN Heng-hui, MENG Min-qiang, ZHU Zhen. Laws of water migration and settlement at interface in loess filled areas under rainfalls[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1710-1720. DOI: 10.11779/CJGE202209016

    Laws of water migration and settlement at interface in loess filled areas under rainfalls

    More Information
    • Received Date: August 15, 2021
    • Available Online: September 22, 2022
    • The new-old interfaces and those with different compaction degrees often cause disasters such as piping, collapse, landslide, uneven settlement and crack in the duration of gully control and land creation projects in the Loess Plateau areas. The relevant physical models are established to reveal the laws of water migration and settlement at interface in loess filled areas under rainfalls. The results show that: (1) The velocity of rainwater seepage increases as the compaction degree of fill decreases. The volumetric moisture content and pore water pressure under low compaction degrees fill increase and decrease sharply near the peak. Besides, the pore water pressure has obvious hysteresis. (2) The wetting front has an obvious transition zone near the interface, where a rainwater dominant flow channel is available. (3) The total settlement of soils is nonlinearly related to the fill height above the interface. Besides, the local incline of the upper edge of the interface with different compaction degrees is much larger than that of the lower edge of the interface, and the maximum local incline appears near the upper edge of the interface. (4) The difference in settlement between soils correlates positively with the difference in compaction degree between the two sides of the interface. Meanwhile, the trend of failure at the interface becomes larger as the difference in compaction degree between the two sides of the interface increases. (5) The large settlement of fill and uneven settlement of soils are often accompanied by surface cracks, and the largest crack appears near the upper edge of the interface with different compaction degrees in soil fill area. Therefore, increasing the compaction degree of fill soils is of great significance for reducing the uneven settlement and preventing the cracks at interface in gully control and land creation projects.
    • [1]
      LI P Y, QIAN H, WU J H. Environment: accelerate research on land creation[J]. Nature, 2014, 510(7503): 29–31. doi: 10.1038/510029a
      [2]
      高建中. 延安新区黄土丘陵沟壑区域工程造地实践[M]. 北京: 中国建筑工业出版社.

      GAO Jian-zhong. Engineering Practice of Land Reciamation in Loess Hilly Gully Areas in Yan'an New District[M]. Beijing: China Architecture & Building Press. (in Chinese)
      [3]
      郭楠, 陈正汉, 杨校辉, 等. 重塑黄土的湿化变形规律及细观结构演化特性[J]. 西南交通大学学报, 2019, 54(1): 73–81, 90. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201901010.htm

      GUO Nan, CHEN Zheng-han, YANG Xiao-hui, et al. Research on wetting-deformation regularity and microstructure evolution characteristics of remoulded loess in triaxial soaking tests[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 73–81, 90. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201901010.htm
      [4]
      高登辉, 陈正汉, 郭楠, 等. 干密度和基质吸力对重塑非饱和黄土变形与强度特性的影响[J]. 岩石力学与工程学报, 2017, 36(3): 736–744. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201703023.htm

      GAO Deng-hui, CHEN Zheng-han, GUO Nan, et al. The influence of dry density and matric suction on the deformation and the strength characteristics of the remolded unsaturated loess soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(3): 736–744. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201703023.htm
      [5]
      张龙, 陈正汉, 扈胜霞, 等. 延安某工地填土的渗水和持水特性研究[J]. 岩土工程学报, 2018, 40(增刊1): 183–188. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S1031.htm

      ZHANG Long, CHEN Zheng-han, HU Sheng-xia, et al. Seepage and water retention characteristics of fill in a construction site in Yan'an[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 183–188. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S1031.htm
      [6]
      张豫川, 高飞, 吕国顺, 等. 基于黄土蠕变试验的高填方地基沉降的数值模拟[J]. 科学技术与工程, 2018, 18(30): 220–227. doi: 10.3969/j.issn.1671-1815.2018.30.036

      ZHANG Yu-chuan, GAO Fei, LÜ Guo-shun, et al. Numerical simulation of high fill foundation settlement based on creep test of loess[J]. Science Technology and Engineering, 2018, 18(30): 220–227. (in Chinese) doi: 10.3969/j.issn.1671-1815.2018.30.036
      [7]
      葛苗苗, 李宁, 郑建国, 等. 基于一维固结试验的压实黄土蠕变模型[J]. 岩土力学, 2015, 36(11): 3164–3170, 3306. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201511017.htm

      GE Miao-miao, LI Ning, ZHENG Jian-guo, et al. A creep model for compacted loess based on 1D oedometer test[J]. Rock and Soil Mechanics, 2015, 36(11): 3164–3170, 3306. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201511017.htm
      [8]
      徐明, 宋二祥. 高填方长期工后沉降研究的综述[J]. 清华大学学报(自然科学版), 2009(6): 786–789. doi: 10.3321/j.issn:1000-0054.2009.06.002

      XU Ming, SONG Er-xiang. Review of long-term settling of high fills[J]. Journal of Tsinghua University (Science and Technology), 2009(6): 786–789. (in Chinese) doi: 10.3321/j.issn:1000-0054.2009.06.002
      [9]
      ZHU C H, LI N. Ranking of influence factors and control technologies for the post-construction settlement of loess high-filling embankments[J]. Computers and Geotechnics, 2020, 118: 103320. doi: 10.1016/j.compgeo.2019.103320
      [10]
      张瑞松, 唐辉, 高建中. 延安新区大厚度压实填土地基均匀性评价[J]. 岩土工程技术, 2020, 34(1): 24–26, 52. doi: 10.3969/j.issn.1007-2993.2020.01.005

      ZHANG Rui-song, TANG Hui, GAO Jian-zhong. Uniformity evaluation of compacted fill foundation with large thickness in Yan'an new district[J]. Geotechnical Engineering Technique, 2020, 34(1): 24–26, 52. (in Chinese) doi: 10.3969/j.issn.1007-2993.2020.01.005
      [11]
      刘家伟, 樊恒辉, 杨秀娟, 等. 原状黄土–压实黄土接触面抗剪强度特性研究[J]. 人民黄河, 2021, 43(2): 127–130. doi: 10.3969/j.issn.1000-1379.2021.02.026

      LIU Jia-wei, FAN Heng-hui, YANG Xiu-juan, et al. Characteristics of shear strength of the interface between disturbed loess and undisturbed loess[J]. Yellow River, 2021, 43(2): 127–130. (in Chinese) doi: 10.3969/j.issn.1000-1379.2021.02.026
      [12]
      李博. 重塑黄土接触面渗透破坏研究[D]. 杨凌: 西北农林科技大学, 2020.

      LI Bo. Research on the Seepage Failure of the Remolded Loess Interface[D]. Yangling: Northwest A & F University, 2020. (in Chinese)
      [13]
      甄平福. 黄土高填方场地大型现场浸水试验研究[D]. 西安: 长安大学, 2018.

      ZHEN Ping-fu. Study on the Large Area Field Immersion Tests in Loess High Fill Ground[D]. Xi'an: Changan University, 2018. (in Chinese)
      [14]
      朱才辉, 李宁. 降雨对沟谷状黄土高填方地基增湿影响研究[J]. 岩土工程学报, 2020, 42(5): 845–854. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202005009.htm

      ZHU Cai-hui, LI Ning. Moistening effects of high-fill embankment due to rainfall infiltration in loess gully region[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 845–854. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202005009.htm
      [15]
      方磊, 李广信, 黄锋. 室内土工模型试验的新方法: 桩基渗水力土工模型试验[J]. 高校地质学报, 1997, 3(4): 451–457. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX199704013.htm

      FANG Lei, LI Guang-xin, HUANG Feng. A new indoor model test of soil-the hydraulic gradient similitude model test for piled foundation[J]. Geological Journal of China Universitiesf, 1997, 3(4): 451–457. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX199704013.htm
      [16]
      徐向舟, 刘大庆, 张红武, 等. 室内人工模拟降雨试验研究[J]. 北京林业大学学报, 2006, 28(5): 52–58. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLY200605009.htm

      XU Xiang-zhou, LIU Da-qing, ZHANG Hong-wu, et al. Laboratory rainfall simulation with controlled rainfall intensity and drainage[J]. Journal of Beijing Forestry University, 2006, 28(5): 52–58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJLY200605009.htm
      [17]
      李广信. 静孔隙水压力与超静孔隙水压力: 兼与陈愈炯先生讨论[J]. 岩土工程学报, 2012, 34(5): 957–960. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201205030.htm

      LI Guang-xin. Static pore water pressure and excess pore water pressure—a discussion with Mr. CHEN Yu-Jiong[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(5): 957–960. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201205030.htm
      [18]
      李广信, 李学梅. 土力学中的渗透力与超静孔隙水压力[J]. 岩土工程界, 2009, 12(4): 11–12. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS200904011.htm

      LI Guang-xin, LI Xue-mei. Seepage force and excess pore water pressure in soil mechanic[J]. Geotechnical Engineering World, 2009, 12(4): 11–12. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS200904011.htm
      [19]
      高朝侠. 黄土区土壤大孔隙流试验研究[D]. 北京: 中国科学院研究生院(教育部水土保持与生态环境研究中心), 2014.

      GAO (CHAO Zhao-xia). The Experimental Study on Macropore Flow in Loess Region[D]. Beijing: Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 2014. (in Chinese)
      [20]
      邵生俊, 李骏, 李国良, 等. 大厚度自重湿陷黄土湿陷变形评价方法的研究[J]. 岩土工程学报, 2015, 37(6): 965–978. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201506002.htm

      SHAO Sheng-jun, LI Jun, LI Guo-liang, et al. Evaluation method for self-weight collapsible deformation of large thickness loess foundation[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 965–978. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201506002.htm
      [21]
      乔建伟, 夏玉云, 郑建国, 等. 黄土湿陷地裂缝发育特征与成因机理研究[J]. 灾害学, 2021, 36(3): 71–76. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU202103014.htm

      QIAO Jian-wei, XIA Yu-yun, ZHENG Jian-guo, et al. Research on development characteristics and formation mechanisms of collapsible earth fissure[J]. Journal of Catastrophology, 2021, 36(3): 71–76. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU202103014.htm

    Catalog

      Article views (199) PDF downloads (67) Cited by()
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return