XU Bin, LIU Xin-rong, ZHOU Xiao-han, LIU Jun, HUANG Jun-hui, WANG Yan, ZENG Xi. Experimental study on dynamic response law of bedding rock slopes under deterioration of rock mass in hydro-fluctuation belt[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1453-1462. DOI: 10.11779/CJGE202208010
    Citation: XU Bin, LIU Xin-rong, ZHOU Xiao-han, LIU Jun, HUANG Jun-hui, WANG Yan, ZENG Xi. Experimental study on dynamic response law of bedding rock slopes under deterioration of rock mass in hydro-fluctuation belt[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1453-1462. DOI: 10.11779/CJGE202208010

    Experimental study on dynamic response law of bedding rock slopes under deterioration of rock mass in hydro-fluctuation belt

    More Information
    • Received Date: August 03, 2021
    • Available Online: September 22, 2022
    • The deterioration of rock mass in hydro-fluctuation belt and the reservoir-induced earthquake, which are caused by the impoundment in the area of Three Gorges Reservoir, have a great impact on the stability of the bank slopes. The shaking table model tests are conducted to investigate the cumulative damage mechanism and dynamic stability of bedding rock slopes subjected to continuous seismic loads under the deterioration of rock mass in hydro-fluctuation belt. The results indicate that: (1) The acceleration response of slopes is significantly characterized by "elevation effect" and "surface effect", and the PGA amplification factor weakens obviously after several times of seismic loads. The cumulative displacement, pore water pressure and earth pressure of slopes show the trend of increasing, increasing and decreasing, respectively, with the continuous action of seismic loads. (2) The damping ratio, natural frequency and damage degree of slopes show the trend of increasing, decreasing and increasing gradually, respectively, with the continuous action of seismic loads. The nonlinear cumulative damage mechanical model for slopes under the action of micro-earthquake and strong earthquake can be characterized by "S-typed" cubic function and "steep rise" exponential function, respectively. (3) The evolution process of cumulative damage and instability failure of slopes can be summarized as: the initiation, propagation and penetration of the back edge of slope top (secondary joints and planes), the overall sliding of rock mass along the composite sliding surface, and the accumulation of the multi-scale broken blocks of rock mass at the foot of slopes after complete failure. Moreover, the rock mass in hydro- fluctuation belt is seriously broken by the coupling action of vibration, dissolution and erosion, and nearly slips as a whole to form a significant "cavity".
    • [1]
      刘新荣, 景瑞, 缪露莉, 等. 巫山段消落带岸坡库岸再造模式及典型案例分析[J]. 岩石力学与工程学报, 2020, 39(7): 1321-1332. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202007003.htm

      LIU Xin-rong, JING Rui, MIAO Lu-li, et al. Reconstruction models and typical case analysis of the fluctuation belt of reservoir bank slopes in Wushan[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(7): 1321-1332. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202007003.htm
      [2]
      WANG L Q, YIN Y P, HUANG B L, et al. A study of the treatment of a dangerous thick submerged rock mass in the Three Gorges reservoir area[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(5): 2579-2590. doi: 10.1007/s10064-020-01724-y
      [3]
      HUANG B L, YIN Y P, YAN G Q, et al. A study on in situ measurements of carbonate rock mass degradation in the water-level fluctuation zone of the Three Gorges Reservoir, China[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(2): 1091-1101. doi: 10.1007/s10064-020-01990-w
      [4]
      刘新荣, 许彬, 刘永权, 等. 频发微小地震下顺层岩质边坡累积损伤及稳定性分析[J]. 岩土工程学报, 2020, 42(4): 632-641. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202004008.htm

      LIU Xin-rong, XU Bin, LIU Yong-quan, et al. Cumulative damage and stability analysis of bedding rock slope under frequent microseisms[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 632-641. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202004008.htm
      [5]
      邓华锋, 齐豫, 李建林, 等. 水-岩作用下断续节理砂岩力学特性劣化机理[J]. 岩土工程学报, 2021, 43(4): 634-643. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202104007.htm

      DENG Hua-feng, QI Yu, LI Jian-lin, et al. Degradation mechanism of intermittent jointed sandstone under water-rock interaction[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 634-643. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202104007.htm
      [6]
      黄润秋. 岩石高边坡稳定性工程地质分析[M]. 北京: 科学出版社, 2012.

      HUANG Run-qiu. Engineering Geology for High Rock Slopes[M]. Beijing: Science Press, 2012. (in Chinese)
      [7]
      张景昱, 宛良朋, 潘洪月, 等. 考虑水-岩作用特点的典型岸坡长期稳定性分析[J]. 岩土工程学报, 2017, 39(10): 1851-1858. doi: 10.11779/CJGE201710013

      ZHANG Jing-yu, WAN Liang-peng, PAN Hong-yue, et al. Long-term stability of bank slope considering characteristics of water-rock interaction[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1851-1858. (in Chinese) doi: 10.11779/CJGE201710013
      [8]
      刘新荣, 傅晏, 王永新, 等. (库)水-岩作用下砂岩抗剪强度劣化规律的试验研究[J]. 岩土工程学报, 2008, 30(9): 1298-1302 doi: 10.3321/j.issn:1000-4548.2008.09.006

      LIU Xin-rong, FU Yan, WANG Yong-xin, et al. Deterioration rules of shear strength of sand rock under water-rock interaction of reservoir[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(9): 1298-1302. (in Chinese) doi: 10.3321/j.issn:1000-4548.2008.09.006
      [9]
      WANG L P, ZHOU M L, DESAR S. Long-term stability calculation of reservoir bank slope considering water-rock interaction[J]. Tehnicki Vjesnik-Technical Gazette, 2017, 24(1): 283-289.
      [10]
      黄波林, 殷跃平, 张枝华, 等. 三峡工程库区岩溶岸坡消落带岩体劣化特征研究[J]. 岩石力学与工程学报, 2019, 38(9): 1786-1796. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201909006.htm

      HUANG Bo-lin, YIN Yue-ping, ZHANG Zhi-hua, et al. Study on deterioration characteristics of shallow rock mass in water the level fluctuation zone of Karst bank slopes in Three Gorges Reservoir area[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(9): 1786-1796. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201909006.htm
      [11]
      WANG L Q, YIN Y P, ZHOU C Y, et al. Damage evolution of hydraulically coupled Jianchuandong dangerous rock mass[J]. Landslides, 2020, 17(5): 1083-1090. doi: 10.1007/s10346-020-01350-5
      [12]
      闫国强, 黄波林, 代贞伟, 等. 三峡库区巫峡段典型岩体劣化特征研究[J]. 水文地质工程地质, 2020, 47(4): 62-72.

      YAN Guo-qiang, HUANG Bo-lin, DAI Zhen-wei, et al. A study of the deterioration effect of limestone bank slope rock mass at the Wuxia section of the Three Gorges Reservoir area[J]. Hydrogeology & Engineering Geology, 2020, 47(4): 62-72. (in Chinese)
      [13]
      ZHANG L F, LI J G, WEI G C, et al. Analysis of the relationship between water level fluctuation and seismicity in the Three Gorges Reservoir (China)[J]. Geodesy and Geodynamics, 2017, 8(2): 96-102. doi: 10.1016/j.geog.2017.02.004
      [14]
      王晨玺杰, 邓华锋, 张恒宾, 等. 考虑劣化效应的三峡库区某岸坡抗震性能分析[J]. 长江科学院院报, 2018, 35(1): 112-116. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201801027.htm

      WANG Chen-xi-jie, DENG Hua-feng, ZHANG Heng-bin, et al. Seismic behavior of a typical bank slope of Three Gorges Reservoir in consideration of degradation of rock mass mechanical properties[J]. Journal of Yangtze River Scientific Research Institute, 2018, 35(1): 112-116. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201801027.htm
      [15]
      刘永权. 频发微震下库区顺层岩质边坡累积损伤演化机理及稳定性研究[D]. 重庆: 重庆大学, 2017.

      LIU Yong-quan. Study on Cumulative Damage Evolution Mechanism and Stability of Bedding Rock Slope in Reservoir Area under Frequent Microseismic[D]. Chongqing: Chongqing University, 2017. (in Chinese)
      [16]
      LIU X R, LIU Y Q, HE C M, et al. Dynamic stability analysis of the bedding rock slope considering the vibration deterioration effect of the structural plane[J]. Bulletin of Engineering Geology and the Environment, 2018, 77(1): 87-103. doi: 10.1007/s10064-016-0945-8
      [17]
      LIU X R, HE C M, LIU S L, et al. Dynamic response and failure mode of slopes with horizontal soft and hard interbeddings under frequent microseisms[J]. Arabian Journal for Science and Engineering, 2018, 43(10): 5397-5411. doi: 10.1007/s13369-018-3143-0
      [18]
      杨忠平, 来云亮, 刘树林, 等. 频发微震下上覆软弱岩体边坡动力稳定及失稳模式[J]. 岩土工程学报, 2019, 41(12): 2297-2306. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201912022.htm

      YANG Zhong-ping, LAI Yun-liang, LIU Shu-lin, et al. Dynamic stability and failure mode of slopes with overlying weak rock mass under frequent micro-seismic actions[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2297-2306. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201912022.htm
      [19]
      顾大钊. 相似材料和相似模型[M]. 徐州: 中国矿业大学出版社, 1995.

      GU Da-zhao. Equivalent Materials and Similitude Models[M]. Xuzhou: China University of Mining & Technology Press, 1995. (in Chinese)
      [20]
      刘新荣, 许彬, 黄俊辉, 等. 多形态贯通型岩体结构面宏细观剪切力学行为研究[J]. 岩土工程学报, 2021, 43(3): 406-415. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202103003.htm

      LIU Xin-rong, XU Bin, HUANG Jun-hui, et al. Macro-meso shear mechanical behaviors of coalescent rock joints with different morphologies[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 406-415. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202103003.htm
      [21]
      兰凯. 三峡库区重庆段水流模型研究[D]. 重庆: 重庆大学, 2005.

      LAN Kai. Study on Flow Model of the Three Gorges Area in Chongqing Region[D]. Chongqing: Chongqing University, 2005. (in Chinese)
      [22]
      张旭辉, 龚晓南, 徐日庆. 边坡稳定影响因素敏感性的正交法计算分析[J]. 中国公路学报, 2003, 16(1): 36-39. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200301008.htm

      ZHANG Xu-hui, GONG Xiao-nan, XU Ri-qing. Orthogonality analysis method of sensibility on factor of slope stability[J]. China Journal of Highway and Transport, 2003, 16(1): 36-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200301008.htm
    • Cited by

      Periodical cited type(45)

      1. 王学滨,余保健,李小帅,张钦杰,郑一方. 基于岩层运动并行计算系统StrataKing的岩层运动模拟. 矿业科学学报. 2025(02): 214-225 .
      2. 牟宗龙,张泽辉,张修峰,盖元,庄佳鑫,史毛宁,董晓勇. 工作面单双巷顶板爆破应力演化规律研究. 煤炭工程. 2024(02): 114-121 .
      3. 王方田,屈鸿飞,张洋,刘超,郝文华,江振鹏. 松软厚煤层区段煤柱剪切滑块运动机理及协同控制技术. 煤炭学报. 2024(03): 1332-1344 .
      4. 刘超,王亮,张帅,唐鸣东,万孝衡,严立德,盛佳. 中深孔爆破对采场人工假顶的影响研究. 矿业研究与开发. 2024(05): 19-24 .
      5. 康志鹏 ,罗勇 ,任波 ,段昌瑞 ,肖殿才 . “三硬”薄煤层沿空留巷围岩破坏特征及控制技术研究. 矿业科学学报. 2024(03): 446-454 .
      6. 张文杰,何满潮,王炯,程满江. 特厚高位顶板切顶自成巷围岩控制技术. 采矿与安全工程学报. 2024(04): 677-687 .
      7. 白盛涛. 深部缓倾斜煤层切顶卸压自成巷应用研究. 煤炭科技. 2024(03): 166-171+177 .
      8. 曹燕涛. 煤矿井下切顶卸压成巷及围岩控制方案的应用分析. 煤矿现代化. 2024(04): 119-122+127 .
      9. 杨耀文,黄姝羽. 深井切眼巷道爆破切顶留巷围岩控制技术研究. 中国矿业. 2024(07): 169-178 .
      10. 郭小六,孟祥甜,谢福星. 浅埋深复杂条件巷道围岩变形规律及稳定性分析. 建井技术. 2024(04): 65-69 .
      11. 贾晋波. 井下无煤柱开采核心技术的应用研究. 山东煤炭科技. 2024(09): 17-21 .
      12. 王柯童,弓培林,赵通. 切顶卸压切缝参数设计与巷道围岩应力演化规律研究. 煤炭技术. 2023(03): 59-63 .
      13. 李亮,韩巨金,宋梓瑜,梁玉春,翟宇,秦常浩. 水平应力对三软巷道扩巷后围岩稳定性影响研究. 能源与环保. 2023(03): 293-299 .
      14. 王琦,何满潮,王允偲,刘寄婷,薛浩杰. 切顶卸压无煤柱自成巷研究进展与展望. 采矿与安全工程学报. 2023(03): 429-447 .
      15. 刘晓宇,于世波,王志修,曹聪. 厚层坚硬顶板无煤柱自成巷开采关键控制技术. 中国矿业. 2023(S1): 295-302 .
      16. 刘晓宇,于世波,王志修,曹聪. 巨厚坚硬砾岩顶板下无煤柱开采技术的应用. 中国矿业. 2023(S1): 281-287 .
      17. 许旭辉,何富连,吕凯,王德秋,李亮,翟文立. 厚层坚硬顶板切顶留巷合理切顶参数. 煤炭学报. 2023(08): 3048-3059 .
      18. 孟利强. 大断面切巷破碎顶板联合维护措施实践. 机械管理开发. 2023(09): 228-229 .
      19. 李东印,邝云锋,王伸,张景轩,王逍康. 综放面停采线厚硬顶板爆破切顶护巷技术研究与应用. 矿业研究与开发. 2023(09): 105-112 .
      20. 谢若珺,李杰,孟鑫,杜晓峰,严文兴,张玉江. 切顶沿空留巷围岩变形特征数值研究. 煤炭技术. 2023(10): 46-51 .
      21. 何满潮,盖秋凯,高玉兵,张星星. 坚硬顶板无煤柱自成巷碎胀平衡机理与调控研究. 中国矿业大学学报. 2023(05): 831-844+930 .
      22. 赵建军. 煤矿井下切顶卸压无煤柱综采技术的应用研究. 山西化工. 2023(11): 174-176 .
      23. 李小鹏,刘少伟,付孟雄,彭博,何亚飞. 密集钻孔切顶卸压关键参数影响因素研究及应用. 煤炭科学技术. 2023(12): 243-253 .
      24. 胡超文,王俊虎,何满潮,王小龙,王君杰,张卓. 中厚煤层切顶卸压无煤柱自成巷技术关键参数研究. 煤炭科学技术. 2022(04): 117-123 .
      25. 吕维赟,路凯,任卓鑫,连强. 切顶卸压沿空留巷围岩变形规律研究. 煤矿安全. 2022(06): 212-217 .
      26. 李东印,张景轩,郑立军,王伸,王文,黄祖军. 密集钻孔弱化底分层顶板沿空留巷技术. 煤矿安全. 2022(07): 111-118+125 .
      27. 王凯,杨宝贵,王鹏宇,李冲. 软弱厚煤层沿空留巷变形破坏特征及控制研究. 岩土力学. 2022(07): 1913-1924+1960 .
      28. 尹志龙,高攀. 千米深井软岩大变形灾害及卸压控制研究. 煤炭科技. 2022(04): 127-133 .
      29. 王昊,张飞,范张磊,杜广盛,郝勇浙. 沿空留巷非对称底鼓机理与控制技术研究. 矿业研究与开发. 2022(10): 95-100 .
      30. 张磊,李伟东,汪义龙,鲁连喜,李永元,高健勋. 薄煤层半煤岩巷道切顶成巷矿压规律研究及应用. 煤炭工程. 2022(10): 104-108 .
      31. 任长宏,王程中,尹松阳. 深部破碎顶板切顶卸压爆破参数研究及应用. 煤炭科技. 2022(05): 132-136 .
      32. 宋征. 四明山煤矿9102运输顺槽沿空留巷支护技术探究. 能源与节能. 2021(05): 22-23+37 .
      33. 郑立军. 综放工作面沿空留巷定向预裂爆破技术研究. 煤炭工程. 2021(10): 19-24 .
      34. 郭金刚,李耀晖,石松豪,蒋再胜,陈冬冬,何富连,谢生荣. 厚硬基本顶切顶卸压成巷及围岩控制技术. 煤炭学报. 2021(09): 2853-2864 .
      35. 秦玄烨,张英华,黄志安,高玉坤. 深井薄煤层保护层坚硬顶板破断机理及控制技术. 中南大学学报(自然科学版). 2021(11): 4010-4020 .
      36. 翟小伟,胡冕,郑增荣,张金贵,杨冲. 房采采空区下工作面煤自燃预防技术研究与应用. 煤炭工程. 2021(12): 77-81 .
      37. 郭鹏飞,袁亚迪,高玉兵,邹宝平,叶铿铿,梁洪达. 基于切顶成巷的巷道顶板危险性分区试验研究. 绍兴文理学院学报(自然科学). 2021(04): 9-17 .
      38. 郭鹏飞,袁亚迪,高玉兵,邹宝平,叶铿铿,梁洪达. 基于切顶成巷的巷道顶板危险性分区试验研究. 绍兴文理学院学报. 2021(10): 9-17 .
      39. 李民族,马资敏,薛定亮,苑云海. 坚硬顶板深浅孔组合聚能爆破技术研究及应用. 矿业科学学报. 2020(06): 616-623 .
      40. 刘大江,许旭辉,朱恒忠,欧阳烽. 中厚煤层坚硬顶板切顶卸压主动留巷关键参数研究. 煤矿安全. 2020(12): 237-243 .
      41. 杨绪鹏,刘万杰,毛鹏. 薄煤层厚泥岩顶板自垮成巷技术应用与实践. 煤炭科学技术. 2020(S2): 180-183 .
      42. 谢小平,刘洪洋,梁敏富. 半煤岩工作面保护层开采的卸压机理及回采设备选型. 煤炭科学技术. 2019(03): 168-174 .
      43. 高作新. 薄煤层工作面沿空留巷围岩控制技术优化研究. 山西能源学院学报. 2019(04): 11-14 .
      44. 李亮,姜彦军,于涛,韩冰,彭博. “三软”厚顶煤回采巷道扩巷围岩稳定性及控制技术. 煤矿安全. 2019(10): 107-111 .
      45. 何东升,刘旦龙,张洋. 复合顶板中厚煤层切顶卸压留巷无煤柱开采技术. 煤炭科学技术. 2018(09): 126-132 .

      Other cited types(20)

    Catalog

      Article views (223) PDF downloads (90) Cited by(65)
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return