• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
JIANG Shui-hua, LIU Xian, HUANG Fa-ming, HUANG Jin-song, ZHANG Wan-tong. Rainfall-induced slope failure mechanism and reliability analyses based on observation information[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1367-1375. DOI: 10.11779/CJGE202208001
Citation: JIANG Shui-hua, LIU Xian, HUANG Fa-ming, HUANG Jin-song, ZHANG Wan-tong. Rainfall-induced slope failure mechanism and reliability analyses based on observation information[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1367-1375. DOI: 10.11779/CJGE202208001

Rainfall-induced slope failure mechanism and reliability analyses based on observation information

More Information
  • Received Date: August 02, 2021
  • Available Online: September 21, 2022
  • The rainfall-induced slope failure mechanism and reliability analyses rarely consider the spatial variability of hydraulic and shear strength parameters at the same time and ignore a fact that the slopes always keep stable under the natural condition. An infinite slope model is taken as an example to conduct probabilistic back analyses of spatially varying shear strength parameters using the observation information in advance. Then, a non-stationary random field model is established to simulate the spatial variability and non-stationary distribution feature of the hydraulic conductivity. The probabilities of slope failure and distributions of the critical slip surface under different rainfall durations are evaluated within the framework of Monte-Carlo simulation. Based on these, the rainfall-induced slope failure mechanisms considering the spatial variability of hydraulic and shear strength parameters simultaneously are investigated. The results indicate that the probability of slope failure evaluated based on the posterior information of shear strength parameters obtained from the probabilistic back analyses is reduced from 28.1% (prior) to 7.2%. It is found that the triggering factors for the slope instability are different for different rainfall stages. The rainfall-induced slope failure mechanism and probability of failure will be erroneously evaluated, especially at the initial stage of rainfall, if the field observation information is ignored.
  • [1]
    詹良通, 刘小川, 泰培, 等. 降雨诱发粉土边坡失稳的离心模型试验及雨强-历时警戒曲线的验证[J]. 岩土工程学报, 2014, 36(10): 1784-1790. doi: 10.11779/CJGE201410004

    ZHAN Liang-tong, LIU Xiao-chuan, TAI Pei, et al. Centrifuge modelling of rainfall-induced slope failure in silty soils and validation of intensity-duration curves[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1784-1790. (in Chinese) doi: 10.11779/CJGE201410004
    [2]
    孙子涵, 王述红, 杨天娇, 等. 降雨条件下多层土坡入渗机理与稳定性分析[J]. 东北大学学报(自然科学版), 2020, 41(8): 1201-1208. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX202008022.htm

    SUN Zi-han, WANG Shu-hong, YANG Tian-jiao, et al. Infiltration mechanism and stability analysis of multilayer soil slope under rainfall conditions[J]. Journal of Northeastern University (Natural Science), 2020, 41(8): 1201-1208. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX202008022.htm
    [3]
    SANTOSO A M, PHOON K K, QUEK S T. Effects of soil spatial variability on rainfall-induced landslides[J]. Computers & Structures, 2011, 89(11/12): 893-900.
    [4]
    CHO S E. Probabilistic stability analysis of rainfall-induced landslides considering spatial variability of permeability[J]. Engineering Geology, 2014, 171: 11-20. doi: 10.1016/j.enggeo.2013.12.015
    [5]
    DOU H Q, HAN T C, GONG X N, et al. Effects of the spatial variability of permeability on rainfall-induced landslides[J]. Engineering Geology, 2015, 192: 92-100. doi: 10.1016/j.enggeo.2015.03.014
    [6]
    SMITH M, KONRAD J M. Assessing hydraulic conductivities of a compacted dam core using geostatistical analysis of construction control data[J]. Canadian Geotechnical Journal, 2011, 48(9): 1314-1327. doi: 10.1139/t11-038
    [7]
    SHEN P, ZHANG L M, ZHU H. Rainfall infiltration in a landslide soil deposit: importance of inverse particle segregation[J]. Engineering Geology, 2016, 205: 116-132. doi: 10.1016/j.enggeo.2015.09.008
    [8]
    CAI J S, YEH T C J, YAN E C, et al. Uncertainty of rainfall-induced landslides considering spatial variability of parameters[J]. Computers and Geotechnics, 2017, 87: 149-162. doi: 10.1016/j.compgeo.2017.02.009
    [9]
    XUE Y, WU Y P, MIAO F S, et al. Effect of spatially variable saturated hydraulic conductivity with non-stationary characteristics on the stability of reservoir landslides[J]. Stochastic Environmental Research and Risk Assessment, 2020, 34(2): 311-329. doi: 10.1007/s00477-020-01777-1
    [10]
    蒋水华, 刘贤, 黄发明, 等. 考虑多参数空间变异性的降雨入渗边坡失稳机理及可靠度分析[J]. 岩土工程学报, 2020, 42(5): 900-907. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202005017.htm

    JIANG Shui-hua, LIU Xian, HUANG Fa-ming, et al. Failure mechanism and reliability analysis of soil slopes under rainfall infiltration considering spatial variability of multiple soil parameters[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 900-907. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202005017.htm
    [11]
    胡长明, 梅源, 刘增荣, 等. 湿陷性黄土高贴坡变形模式和稳定性分析[J]. 岩石力学与工程学报, 2012, 31(12): 2585-2592. doi: 10.3969/j.issn.1000-6915.2012.12.024

    HU Chang-ming, MEI Yuan, LIU Zeng-rong, et al. Deformation mode and stability analysis of high sticking slope of collapsible loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(12): 2585-2592. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.12.024
    [12]
    李媛, 孟晖, 董颖, 等. 中国地质灾害类型及其特征: 基于全国县市地质灾害调查成果分析[J]. 中国地质灾害与防治学报, 2004, 15(2): 29-34. doi: 10.3969/j.issn.1003-8035.2004.02.005

    LI Yuan, MENG Hui, DONG Ying, et al. Main types and characterisitics of geo-hazard in China: based on the results of geo-hazard survey in 290 counties[J]. The Chinese Journal of Geological Hazard and Control, 2004, 15(2): 29-34. (in Chinese) doi: 10.3969/j.issn.1003-8035.2004.02.005
    [13]
    孙广忠, 姚宝魁. 中国典型滑坡[M]. 北京: 科学出版社, 1998.

    SUN Guang-zhong, YAO Bao-kui. Typical Slopes in China[M]. Beijing: Science Press, 1998. (in Chinese)
    [14]
    戚国庆. 降雨诱发滑坡机理及其评价方法研究: 非饱和土力学理论在降雨型滑坡研究中的应用[D]. 成都: 成都理工大学, 2004.

    QI Guo-qing. Study on the Mechanics of Rainfall-Induced Landslide and Its Evaluating Method: the Research of Landslide Due to Rainfall Applying Theories of Unsaturated Soils Mechanics[D]. Chengdu: Chengdu University of Technology, 2004. (in Chinese)
    [15]
    STRAUB D, PAPAIOANNOU I. Bayesian updating with structural reliability methods[J]. Journal of Engineering Mechanics, 2015, 141(3): 04014134. doi: 10.1061/(ASCE)EM.1943-7889.0000839
    [16]
    ZHANG L L, ZHANG J, ZHANG L M, et al. Back analysis of slope failure with Markov chain Monte Carlo simulation[J]. Computers and Geotechnics, 2010, 37(7/8): 905-912.
    [17]
    蒋水华, 冯泽文, 刘贤, 等. 基于自适应贝叶斯更新方法的岩土参数概率分布推断[J]. 岩土力学, 2020, 41(1): 325-335. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202001038.htm

    JIANG Shui-hua, FENG Ze-wen, LIU Xian, et al. Inference of probability distributions of geotechnical parameters using adaptive Bayesian updating approach[J]. Rock and Soil Mechanics, 2020, 41(1): 325-335. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202001038.htm
    [18]
    PHOON K K, RETIEF J V, CHING J, et al. Some observations on ISO2394: 2015 annex D (reliability of geotechnical structures)[J]. Structural Safety, 2016, 62: 24-33. doi: 10.1016/j.strusafe.2016.05.003
    [19]
    陈朝晖, 黄凯华. 土质边坡可靠性分析的分层非平稳随机场模型[J]. 岩土工程学报, 2020, 42(7): 1247-1256. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202007012.htm

    CHEN Zhao-hui, HUANG Kai-hua. Non-homogeneous random field model for reliability analysis of slopes[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1247-1256. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202007012.htm
    [20]
    ALI A, HUANG J S, LYAMIN A V, et al. Simplified quantitative risk assessment of rainfall-induced landslides modelled by infinite slopes[J]. Engineering Geology, 2014, 179: 102-116. doi: 10.1016/j.enggeo.2014.06.024
    [21]
    YUAN J, PAPAIOANNOU I, STRAUB D. Probabilistic failure analysis of infinite slopes under random rainfall processes and spatially variable soil[J]. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 2019, 13(1): 20-33. doi: 10.1080/17499518.2018.1489059
    [22]
    SIMUNEK J, VAN GENUCHTEN M T, SEJNA M. The Hydrus-1D software package for simulating the movement of water, heat, and multiple solutes in variably saturated media, Version 4.16, HYDRUS Software Series 3[M]. California: Department of Environmental Sciences, University of California Riverside, 2013.
    [23]
    VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898. doi: 10.2136/sssaj1980.03615995004400050002x
    [24]
    MUALEM Y. A new model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water Resources Research, 1976, 12(3): 513-522. doi: 10.1029/WR012i003p00513
    [25]
    RAY R L, JACOBS J M, DE ALBA P. Impacts of unsaturated zone soil moisture and groundwater table on slope instability[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(10): 1448-1458. doi: 10.1061/(ASCE)GT.1943-5606.0000357
    [26]
    李典庆, 祁小辉, 周创兵, 等. 考虑参数空间变异性的无限长边坡可靠度分析[J]. 岩土工程学报, 2013, 35(10): 1799-1806. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201310006.htm

    LI Dian-qing, QI Xiao-hui, ZHOU Chuang-bing, et al. Reliability analysis of infinite soil slopes considering spatial variability of soil parameters[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1799-1806. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201310006.htm
    [27]
    LI D Q, QI X H, PHOON K K, et al. Effect of spatially variable shear strength parameters with linearly increasing mean trend on reliability of infinite slopes[J]. Structural Safety, 2014, 49: 45-55. doi: 10.1016/j.strusafe.2013.08.005
    [28]
    JIANG S H, LI D Q, ZHANG L M, et al. Slope reliability analysis considering spatially variable shear strength parameters using a non-intrusive stochastic finite element method[J]. Engineering Geology, 2014, 168: 120-128. doi: 10.1016/j.enggeo.2013.11.006
    [29]
    DEPINA I, OGUZ E A, THAKUR V. Novel Bayesian framework for calibration of spatially distributed physical-based landslide prediction models[J]. Computers and Geotechnics, 2020, 125: 103660. doi: 10.1016/j.compgeo.2020.103660
    [30]
    蒋水华, 刘源, 张小波, 等. 有限数据条件下空间变异岩土力学参数随机反演分析及比较[J]. 岩石力学与工程学报, 2020, 39(6): 1265-1276. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202006017.htm

    JIANG Shui-hua, LIU Yuan, ZHANG Xiao-bo, et al. Stochastic back analysis and comparison of spatially varying geotechnical mechanical parameters based on limited data[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(6): 1265-1276. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202006017.htm
    [31]
    CHRISTIAN J T, BAECHER G B. Unresolved problems in geotechnical risk and reliability[C]// Georisk 2011. June 26-28, 2011, Atlanta, Georgia, USA. Reston, VA, USA: American Society of Civil Engineers, 2011: 50-63.
    [32]
    WAI R C T, LEE R W H, LAW R H C. Review of Landslides in 2016[R]. Hong Kong: Hong Kong Geotechnical Engineering Office (GEO), 2016.

Catalog

    Article views (303) PDF downloads (208) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return