YUAN Si-min, WANG Lu-jun, ZHU Bin, CHEN Yun-min. Volumetric strain analysis model for gas hydrate-bearing sediment considering effects of hydrate dissociation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1044-1052. DOI: 10.11779/CJGE202206008
    Citation: YUAN Si-min, WANG Lu-jun, ZHU Bin, CHEN Yun-min. Volumetric strain analysis model for gas hydrate-bearing sediment considering effects of hydrate dissociation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1044-1052. DOI: 10.11779/CJGE202206008

    Volumetric strain analysis model for gas hydrate-bearing sediment considering effects of hydrate dissociation

    More Information
    • Received Date: June 16, 2021
    • Available Online: September 22, 2022
    • In the exploitation of gas hydrate, recovering methane from gas hydrate breaks the phase equilibrium state of hydrate and produces water and gas, which reduces the quality of the solid phase in the gas hydrate-bearing sediment (GHBS). Based on the triaxial tests as well as the mechanical properties of GHBS, the solid skeleton is divided into indecomposable soil skeleton and decomposable solid hydrate. The compression parameters of GHBS varying with hydrate saturation are introduced to establish an analysis model that can describe the coupling effects of stress, hydrate decomposition and variation of volumetric strain of GHBS with time during hydrate dissociation process. The proposed model can describe the effects of depressurization rate, pore pressure reduction and hydrate dissociation rate on deformation of GHBS. The numerical results show that with the increase of the depressurization rate, the volumetric strain rate increases in depressurization stage and the time to reach phase equilibrium decreases. The hydrate dissociation rate that has an obvious effect on the deformation rate of reservoir is different in sediments with different particle sizes. The stable pore pressure affects the final settlement of the reservoir, and reducing it can improve the efficiency of gas hydrate exploitation, however, the larger the reduction of pore pressure, the larger the volumetric strain.
    • [1]
      SLOAN E D. Gas hydrates: review of physical/chemical properties[J]. Energy & Fuels, 1998, 12(2): 191–196.
      [2]
      方圆, 张万益, 曹佳文, 等. 我国能源资源现状与发展趋势[J]. 矿产保护与利用, 2018(4): 34–42, 47. https://www.cnki.com.cn/Article/CJFDTOTAL-KCBH201804009.htm

      FANG Yuan, ZHANG Wan-yi, CAO Jia-wen, et al. Analysis on the current situation and development trend of energy resources in China[J]. Conservation and Utilization of Mineral Resources, 2018(4): 34–42, 47. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KCBH201804009.htm
      [3]
      SLOAN E D Jr. Fundamental principles and applications of natural gas hydrates[J]. Nature, 2003, 426(6964): 353–359. doi: 10.1038/nature02135
      [4]
      WAITE W F, SANTAMARINA J C, CORTES D D, et al. Physical properties of hydrate-bearing sediments[J]. Reviews of Geophysics, 2009, 47(4): RG4003.
      [5]
      HYODO M, YONEDA J, YOSHIMOTO N, et al. Mechanical and dissociation properties of methane hydrate-bearing sand in deep seabed[J]. Soils and Foundations, 2013, 53(2): 299–314. doi: 10.1016/j.sandf.2013.02.010
      [6]
      KAJIYAMA S, WU Y, HYODO M, et al. Experimental investigation on the mechanical properties of methane hydrate-bearing sand formed with rounded particles[J]. Journal of Natural Gas Science and Engineering, 2017, 45: 96–107. doi: 10.1016/j.jngse.2017.05.008
      [7]
      吴杨, 崔杰, 廖静容, 等. 不同细颗粒含量甲烷水合物沉积物三轴剪切试验研究[J]. 岩土工程学报, 2021, 43(1): 156–164. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202101024.htm

      WU Yang, CUI Jie, LIAO Jing-rong, et al. Experimental study on mechanical characteristics of gas hydrate-bearing sands containing different fines[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 156–164. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202101024.htm
      [8]
      WU L Y, GROZIC J L. Laboratory analysis of carbon dioxide hydrate-bearing sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(4): 547–550. doi: 10.1061/(ASCE)1090-0241(2008)134:4(547)
      [9]
      颜荣涛, 韦昌富, 魏厚振, 等. 水合物形成对含水合物砂土强度影响[J]. 岩土工程学报, 2012, 34(7): 1234–1240. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201207010.htm

      YAN Rong-tao, WEI Chang-fu, WEI Hou-zhen, et al. Effect of hydrate formation on mechanical strength of hydrate-bearing sand[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1234–1240. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201207010.htm
      [10]
      YUN T S, SANTAMARINA J C, RUPPEL C. Mechanical properties of sand, silt, and clay containing tetrahydrofuran hydrate[J]. Journal of Geophysical Research, 2007, 112: B04106.
      [11]
      张旭辉, 鲁晓兵, 王淑云, 等. 四氢呋喃水合物沉积物静动力学性质试验研究[J]. 岩土力学, 2011, 32(增刊1): 303–308. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S1055.htm

      ZHANG Xu-hui, LU Xiao-bing, WANG Shu-yun, et al. Experimental study of static and dynamic properties of tetrahydrofuran hydrate-bearing sediments[J]. Rock and Soil Mechanics, 2011, 32(S1): 303–308. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S1055.htm
      [12]
      刘芳, 寇晓勇, 蒋明镜, 等. 含水合物沉积物强度特性的三轴试验研究[J]. 岩土工程学报, 2013, 35(8): 1565–1572. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201308027.htm

      LIU Fang, KOU Xiao-yong, JIANG Ming-jing, et al. Triaxial shear strength of synthetic hydrate-bearing sediments[J]. Chinese Journal of Geotechnical Engineering 2013, 35(8): 1565–1572. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201308027.htm
      [13]
      HYODO M, LI Y H, YONEDA J, et al. Effects of dissociation on the shear strength and deformation behavior of methane hydrate-bearing sediments[J]. Marine and Petroleum Geology, 2014, 51: 52–62. doi: 10.1016/j.marpetgeo.2013.11.015
      [14]
      LI D L, WU Q, WANG Z, et al. Tri-axial shear tests on hydrate-bearing sediments during hydrate dissociation with depressurization[J]. Energies, 2018, 11(7): 1819. doi: 10.3390/en11071819
      [15]
      CHOI J H, LIN J S, DAI S, et al. Triaxial compression of hydrate-bearing sediments undergoing hydrate dissociation by depressurization[J]. Geomechanics for Energy and the Environment, 2020, 23: 100187. doi: 10.1016/j.gete.2020.100187
      [16]
      MIYAZAKI K, MASUI A, SAKAMOTO Y, et al. Triaxial compressive properties of artificial methane-hydrate-bearing sediment[J]. Journal of Geophysical Research, 2011, 116: B06102.
      [17]
      MIYAZAKI K, TENMA N, AOKI K, et al. A nonlinear elastic model for triaxial compressive properties of artificial methane-hydrate-bearing sediment samples[J]. Energies, 2012, 5: 4057–4075. doi: 10.3390/en5104057
      [18]
      UCHIDA S, SOGA K, YAMAMOTA K. Critical state soil constitutive model for methane hydrate soil[J]. Journal of Geophysical Research, 2012, 117(B3): B03209.
      [19]
      SULTAN N, GARZIGLIA S. Geomechanical constitutive modeling of gas-hydrate-bearing sediments[C]//Proceedings of the 7th International Conference on Gas Hydrates. 2011. Edinburgh.
      [20]
      蒋明镜, 刘俊, 周卫, 等. 一个深海能源土弹塑性本构模型[J]. 岩土力学, 2018, 39(4): 1153–1158. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201804001.htm

      JIANG Ming-jing, LIU Jun, ZHOU Wei, et al. An elasto-plastic constitutive model for methane hydrate bearing sediments[J]. Rock and Soil Mechanics, 2018, 39(4): 1153–1158. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201804001.htm
      [21]
      蒋明镜, 陈意茹, 卢国文. 一种实用型深海能源土多场耦合离散元数值方法[J]. 岩土工程学报, 2021, 43(8): 1391–1398. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202108004.htm

      JIANG Ming-jing, CHEN Yi-ru, LU Guo-wen. A practical multi-field coupling distinct element method for methane hydrate bearing sediments[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1391–1398. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202108004.htm
      [22]
      韦昌富, 颜荣涛, 田慧会, 等. 天然气水合物开采的土力学问题: 现状与挑战[J]. 天然气工业, 2020, 40(8): 116–132. doi: 10.3787/j.issn.1000-0976.2020.08.009

      WEI Chang-fu, YAN Rong-tao, TIAN Hui-hui, et al. Geotechnical problems in exploitation of natural gas hydrate: status and challenges[J]. Natural Gas Industry, 2020, 40(8): 116–132. (in Chinese) doi: 10.3787/j.issn.1000-0976.2020.08.009
      [23]
      陈云敏. 环境土工基本理论及工程应用[J]. 岩土工程学报, 2014, 36(1): 1–46. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201401003.htm

      CHEN Yun-min. A fundamental theory of environmental geotechnics and its application[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 1–46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201401003.htm
      [24]
      CHEN Y M, KE H, FREDLUND D G, et al. Secondary compression of municipal solid wastes and a compression model for predicting settlement of municipal solid waste landfills[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2010, 136(5): 706–717. doi: 10.1061/(ASCE)GT.1943-5606.0000273
      [25]
      柯翰, 郭城, 陈云敏, 等. 考虑降解效应的城市固体废弃物非线性本构模型[J]. 岩土力学, 2014, 35(5): 1217–1223. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201405001.htm

      KE Han, GUO Cheng, CHEN Yun-min, et al. A nonlinear constitutive model for municipal solid waste considering effects of degradation[J]. Rock and Soil Mechanics, 2014, 35(5): 1217–1223. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201405001.htm
      [26]
      LEE J Y, SANTAMARINA J C, RUPPEL C. Volume change associated with formation and dissociation of hydrate in sediment[J]. Geochemistry Geophysics Geosystems, 2010, 11(3): Q03007.
      [27]
      李振赫. 天然气水合物降压开采中沉积物变形响应试验研究[D]. 天津: 天津大学, 2018.

      LI Zhen-he. Experimental Study on Sediment Deformation During Natural Gas Hydrate Dissociation by Depressurization[D]. Tianjin: Tianjin University, 2018. (in Chinese)
      [28]
      张郁, 蔡晶, 李小森, 等. 南海沉积物中甲烷水合物定压分解特性[J]. 中国科学: 物理学力学天文学, 2019, 49(3): 136–143. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201903010.htm

      ZHANG Yu, CAI Jing, LI Xiao-sen, et al. Dissociation behaviors of methane hydrate in marine sediments from South China Sea under constant pressure[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2019, 49(3): 136–143. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201903010.htm
      [29]
      文龙, 周雪冰, 梁德青. 甲烷水合物在天然砂中的分解动力学研究[J]. 石油化工, 2019, 48(9): 926–931. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHG201909009.htm

      WEN Long, ZHOU Xue-bing, LIANG De-qing. Investigation on decomposition kinetics of methane hydrate in natural sand[J]. Petrochemical Technology, 2019, 48(9): 926–931. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYHG201909009.htm
      [30]
      蒋明镜, 贺洁, 申志福. 甲烷水合物三维离散元模拟参数反演初探[J]. 岩土工程学报, 2014, 35(4): 736–744. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201404024.htm

      JIANG Ming-jing, HE Jie, SHEN Zhi-fu. Preliminary investigation on parameter inversion for three-dimensional distinct element modeling of methane hydrate[J]. Chinese Journal of Geotechnical Engineering, 2014, 35(4): 736–744. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201404024.htm
      [31]
      WANG Y, FENG J C, LI X S, et al. Evaluation of gas production from marine hydrate deposits at the GMGS2-site 8, Pearl River mouth basin, South China Sea[J]. Energies, 2016, 9: 222. doi: 10.3390/en9030222
      [32]
      WU Y, HYODO M, CUI J. On the critical state characteristics of methane hydrate-bearing sediments[J]. Marine and Petroleum Geology, 2020, 116: 104342. doi: 10.1016/j.marpetgeo.2020.104342
      [33]
      李洋辉. 天然气水合物沉积物强度及变形特性研究[D]. 大连: 大连理工大学, 2013.

      LI Yang-hui. Study on Strength and Deformation Behaviors of Methane Hydrate-Bearing Sediments[D]. Dalian: Dalian University of Technology, 2013. (in Chinese)
    • Cited by

      Periodical cited type(11)

      1. 袁松,王希宝,陈子全,蒋长伟. 极高地应力硬岩隧道洞群间距对岩爆的影响研究. 施工技术(中英文). 2024(06): 42-48+100 .
      2. 郭志玉. 浅埋大断面分岔隧道中夹岩柱稳定性数值模拟研究. 重庆建筑. 2023(01): 65-68 .
      3. 李晓军,杨正旭,黄锋,王程平,刘星辰. 浅埋大断面小净距隧道支护受力特性实测与模拟研究. 科技和产业. 2022(08): 309-314 .
      4. 马军旗,周林豪,周永,陈军程,张志增. 基于虚拟现实技术的隧道工程数值模拟三维可视化研究. 科技创新与应用. 2022(28): 12-16 .
      5. 王昱博,肖支飞,王安民,郑勇,仝跃. 基于CDEM方法的小间距巷道中间岩柱稳定性分析. 地下空间与工程学报. 2022(S2): 785-791 .
      6. 蒋庆,范宏运,李涛,周宗青. 超大断面小净距隧道应力场演化研究. 中外公路. 2021(01): 197-202 .
      7. 丁玉仁. 小净距隧道群中夹岩水平位移规律的现场实测研究. 交通科技. 2020(02): 87-91 .
      8. 姜封国,白丽丽,宋敏,王路曈,谭小婷. 哈尔滨城市地铁大断面隧道施工稳定性分析. 吉林大学学报(工学版). 2020(04): 1419-1427 .
      9. 汤建元,董永泽,余鸾鹦,王德志,巩海筱. 超大跨度公路隧道衬砌的变形规律及裂缝处理. 筑路机械与施工机械化. 2020(07): 32-36 .
      10. 季海蓉. 考虑冗余度的管廊施工支护结构优化设计. 粉煤灰综合利用. 2020(05): 21-24+99 .
      11. 巩师林,凌道盛,胡成宝,钮家军. 非连续变形分析中块体大转动问题研究. 岩土力学. 2020(11): 3810-3822 .

      Other cited types(10)

    Catalog

      Article views PDF downloads Cited by(21)
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return