• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
SONG Lin-hui, WANG Xing-ya, WU Hao-yu, ZHOU Ke-fa, MEI Guo-xiong. Permeation process of clay under different stresses[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 755-761. DOI: 10.11779/CJGE202204019
Citation: SONG Lin-hui, WANG Xing-ya, WU Hao-yu, ZHOU Ke-fa, MEI Guo-xiong. Permeation process of clay under different stresses[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 755-761. DOI: 10.11779/CJGE202204019

Permeation process of clay under different stresses

More Information
  • Received Date: June 14, 2021
  • Available Online: September 22, 2022
  • Permeability is one of the important engineering properties of clay. It is characterized by the permeability coefficient, and its mechanism lies in the permeability process of water in clay. In order to describe the permeation process of clay, the developed rigid wall consolidation infiltration device is used to carry out clay seepage tests under 9 stress conditions. The water transfer rate and flow rate at different positions of the clay are quantitatively analyzed by the fluorescence tracing technique. The results show that the water transfer rate on the same cross section of the sample varies widely, and the distribution is very uneven. The dominant channel is easy to appear in the seepage process, and the distribution of the dominant channel is random and irregular. Under the influences of hydraulic seepage consolidation, there are also differences in permeable rate and flow rate on different cross sections. The parametric value of the soil layer near the water body is the largest and shows a decreasing trend along the seepage direction. The permeable rate and flow rate of clay both increase with the increase of hydraulic gradient and decreases with the increase of consolidation pressure, but the hydraulic gradient is more significant than consolidation pressure in terms of influence degree.
  • [1]
    MESRI G. Mechanisms controlling the permeability of clays[J]. Clays and Clay Minerals, 1971, 19(3): 151–158. doi: 10.1346/CCMN.1971.0190303
    [2]
    NAGARAJ T S, PANDIAN N S, NARASHIMHA R P S R. Stress state-permeability relationships for fine-grained soils[J]. Géotechnique, 1993, 43(2): 333–336. doi: 10.1680/geot.1993.43.2.333
    [3]
    曾玲玲, 洪振舜, 陈福全. 压缩过程中重塑黏土渗透系数的变化规律[J]. 岩土力学, 2012, 33(5): 1286–1292. doi: 10.3969/j.issn.1000-7598.2012.05.002

    ZENG Ling-ling, HONG Zhen-shun, CHEN Fu-quan. A law of change in permeability coefficient during compression of remolded clays[J]. Rock and Soil Mechanics, 2012, 33(5): 1286–1292. (in Chinese) doi: 10.3969/j.issn.1000-7598.2012.05.002
    [4]
    梁健伟, 房营光. 极细颗粒黏土渗流特性试验研究[J]. 岩石力学与工程学报, 2010, 29(6): 1222–1230. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201006019.htm

    LIANG Jian-wei, FANG Ying-guang. Experimental study of seepage characteristics of tiny-particle clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(6): 1222–1230. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201006019.htm
    [5]
    宋林辉, 黄强, 闫迪, 等. 水力梯度对黏土渗透性影响的试验研究[J]. 岩土工程学报, 2018, 40(9): 1635–1641. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201809011.htm

    SONG Lin-hui, HUANG Qiang, YAN Di, et al. Experimental study on effect of hydraulic gradient on permeability of clay[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1635–1641. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201809011.htm
    [6]
    党发宁, 刘海伟, 王学武, 等. 基于有效孔隙比的黏性土渗透系数经验公式研究[J]. 岩石力学与工程学报, 2015, 34(9): 1909–1917. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201509022.htm

    DANG Fa-ning, LIU Hai-wei, WANG Xue-wu, et al. Empirical formulas of permeability of clay based on effective pore ratio[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(9): 1909–1917. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201509022.htm
    [7]
    RENSHAW C E, DADAKIS J S, BROWN S R. Measuring fracture apertures: a comparison of methods[J]. Geophysical Research Letters, 2000, 27(2): 289–292. doi: 10.1029/1999GL008384
    [8]
    周健, 姚志雄, 张刚. 砂土渗流过程的细观数值模拟[J]. 岩土工程学报, 2007, 29(7): 977–981. doi: 10.3321/j.issn:1000-4548.2007.07.004

    ZHOU Jian, YAO Zhi-xiong, ZHANG Gang. Mesomechanical simulation of seepage flow in sandy soil[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(7): 977–981. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.07.004
    [9]
    孙强, 刘盛东, 姜春露, 等. 砂岩地层渗流过程非饱和厚度变化的地电测试[J]. 岩土工程学报, 2013, 35(7): 1350–1354. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201307025.htm

    SUN Qiang, LIU Sheng-dong, JIANG Chun-lu, et al. Electric response tests on unsaturated layer thickness in course of seepage of sandstone[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(7): 1350–1354. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201307025.htm
    [10]
    程竹华, 张佳宝, 徐绍辉. 黄淮海平原三种土壤中优势流现象的试验研究[J]. 土壤学报, 1999, 36(2): 154–161. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB199902001.htm

    CHENG Zhu-hua, ZHANG Jia-bao, XU Shao-hui. Experimental studies on preferential flow in three soils in hunag-Huai-Hai plain[J]. Acta Pedologica Sinica, 1999, 36(2): 154–161. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB199902001.htm
    [11]
    刘目兴, 杜文正. 山地土壤优先流路径的染色示踪研究[J]. 土壤学报, 2013, 50(5): 871–880. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201305003.htm

    LIU Mu-xing, DU Wen-zheng. To investigate soil preferential flow paths in mountain area using dye tracer[J]. Acta Pedologica Sinica, 2013, 50(5): 871–880. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201305003.htm
    [12]
    BAI B, XU T, GUO Z G. An experimental and theoretical study of the seepage migration of suspended particles with different sizes[J]. Hydrogeology Journal, 2016, 24(8): 2063–2078. doi: 10.1007/s10040-016-1450-7
    [13]
    张文杰, 严宏罡, 孙铖. 城市生活垃圾中优先流规律的穿透试验研究[J]. 岩土工程学报, 2018, 40(7): 1316–1321. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201807024.htm

    ZHANG Wen-jie, YAN Hong-gang, SUN Cheng. Breakthrough tests on preferential flow in municipal solid waste[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1316–1321. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201807024.htm
    [14]
    BAI B, XU T, LI H W. The semi-analytical solution of particle transport in porous media induced by seepage[J]. Fresenius Environmental Bulletin, 2017, 26(10): 6286–6294.
  • Related Articles

    [1]LIANG Hao, LI Dayong, WU Yuqi. Pull-out bearing behavior and failure mode of scaled suction caissons[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1928-1935. DOI: 10.11779/CJGE20230556
    [2]LIU Qi-fei, ZHUANG Hai-yang, CHEN Jia, WU Qi, CHEN Guo-xing. Tests on shear strength and failure mode of rubber particle-sand mixtures[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1887-1895. DOI: 10.11779/CJGE202110015
    [3]LÜ Bu, YANG Zhi-jun, WEI Xiu-dong, LU Ji-zhong, FU Xu-dong. Failure modes and constitutive model for weak interlayer of dam foundation with different inclination angles[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 189-192. DOI: 10.11779/CJGE2019S1048
    [4]ZHENG Gang, GUO Zhi-yi, YANG Xin-yu, ZHOU Hai-zuo, YU Xiao-xuan, ZHAO Jia-peng, XIA Bo-yang. Influences of stiffness of piles on failure modes of embankment of composite foundation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 49-52. DOI: 10.11779/CJGE2019S1013
    [5]YANG Bing, SUN Ming-xiang, WANG Run-ming, YANG Tao, FENG Jun, ZHOU De-pei. Shaking table tests on influences of water content of soils on dynamic failure modes and dynamic responses of slopes[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 759-767. DOI: 10.11779/CJGE201804021
    [6]YU Jian-lin, LI Jun-yuan, WANG Chuan-wei, ZHANG Jia-lin, GONG Xiao-nan, CHEN Chang-fu, SONG Er-xiang. Stability of composite foundation improved by rigid piles under embankment considering different failure modes of piles[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 37-40. DOI: 10.11779/CJGE2017S2010
    [7]FAN Gang, ZHANG Jian-jing, FU Xiao, WANG Zhi-jia, TIAN Hua. Energy identification method for dynamic failure mode of bedding rock slope with soft strata[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 959-966. DOI: 10.11779/CJGE201605024
    [8]SONG Fei, XIE Yong-li, YANG Xiao-hua, ZHANG Lu-yu. Failure mode of geocell flexible retaining wall with surcharge acting on backfill surface[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 152-155.
    [9]LI Xun-chang, MEN Yu-ming, ZHANG Tao, LIU Hong-jia, YAN Jing-ping. Experimental study on failure modes for anti-slide piles with a single anchor[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(5): 803.
    [10]ZHOU Jian, KONG Xiangli, WANG Xiaocun. Bearing capacity behaviours and failure modes of reinforced grounds[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(9): 1265-1269.
  • Cited by

    Periodical cited type(21)

    1. 艾楠,宋辰宁,王培森. 地铁运行对邻近建筑振动响应研究. 山东建筑大学学报. 2025(01): 32-40 .
    2. 杨超,朱硕,董文韬. 基于Citespace的城市轨道交通安全研究热点与前沿可视化分析. 交通与运输. 2025(01): 82-87 .
    3. 周腾飞. 地铁列车运行引起邻近建筑物振动响应研究. 四川水泥. 2025(02): 26-28 .
    4. 吴思豫,戚承志,卢春生,李太行,姜凯松,龙渊腾. 地铁运行对古城墙的振动影响. 工程建设与设计. 2025(03): 73-77 .
    5. 王凯,富志强,杨春波,王俊伟. 黄土地层公路隧道运营期下穿古长城动力响应研究. 公路. 2024(04): 416-421 .
    6. 张军. 深埋地铁隧道对临近桥梁桩基的扰动分析. 工程技术研究. 2024(07): 20-23+34 .
    7. 万颖君,金鑫,马光辉,张振宇,翟洪刚,汤方程,孙苗苗. 软土地区施工现场重载车辆对基坑周围环境振动实测分析. 华南地震. 2024(02): 128-135 .
    8. 花雨萌,谢伟平,陈斌. 地铁振动对建筑物竖向楼层响应的影响研究. 建筑结构学报. 2023(03): 122-129 .
    9. 邹超,冯青松,何卫. 列车运行引起地铁车辆段与上盖建筑环境振动研究综述. 交通运输工程学报. 2023(01): 27-46 .
    10. 孙志浩,李明睿,冯国辉,徐长节,黄展军,侯世磊,何小辉. 交通荷载下叠合式公轨隧道的力学性状研究. 铁道科学与工程学报. 2023(06): 2210-2221 .
    11. 贾宝新,周志扬,苑文雅,张晶. 基于等效质点峰值振动速度的高铁线路周边建筑结构振动评价研究. 岩土力学. 2023(09): 2696-2706 .
    12. 路德春,高泽军,孔凡超,马一丁,沈晨鹏,杜修力. 地铁列车运行诱发地面邻近建筑振动的数值模拟研究. 土木与环境工程学报(中英文). 2023(06): 113-124 .
    13. 肖迪,段旭,刘武超,邹愈,董琪,叶万军. 地铁振动作用下上部正交综合管廊动力响应试验研究. 防灾减灾工程学报. 2023(05): 1151-1159 .
    14. 王韵超,王思崎,郑茗旺,郑凌逶,谢新宇. 弹簧浮置板减振措施对地铁下穿不同结构建筑物振动影响实测及分析. 低温建筑技术. 2021(03): 51-54+59 .
    15. 谭佳,许炜萍,赵楚轩,王呼佳,杨朋,孙克国. 地铁过渡段结构振动响应特性与噪声分析. 城市轨道交通研究. 2021(05): 37-41+46 .
    16. 袁庆利. 运营期地铁列车振动下软黏土的动力响应及变形研究. 国防交通工程与技术. 2021(04): 25-30 .
    17. 汪益敏,刘品言,陶子渝,陈皓粤,周杰. 地铁车辆段直线电机列车车致振动的试验研究. 铁道科学与工程学报. 2021(09): 2436-2443 .
    18. 夏志强,凌可胜,董克胜,徐小扣,沈威,方火浪. 地铁列车曲线运行引起学校建筑物振动响应分析. 地震工程学报. 2021(06): 1377-1386 .
    19. 程保青,郭婧怡,蒋浩杰. 地铁车辆段咽喉区上盖建筑振动影响. 应用声学. 2021(06): 911-917 .
    20. 郑国琛,许航莉,祁皑,郭金龙. 地铁及地面交通环境振动实测与数值模拟研究. 中国环境科学. 2020(09): 4146-4154 .
    21. 孟坤,崔春义,许民泽,王启福,苏健. 地铁运行引起的临近桥梁结构振动分析. 深圳大学学报(理工版). 2020(06): 610-616 .

    Other cited types(18)

Catalog

    Article views (238) PDF downloads (375) Cited by(39)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return