Citation: | ZHU Shuai-run, LI Shao-hong, HE Bo, WU Li-zhou. Application of improved Picard method in unsaturated seepage[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 712-720. DOI: 10.11779/CJGE202204014 |
[1] |
李梦姿, 蔡国庆, 李昊, 等. 考虑抗拉强度剪断的非饱和土无限边坡稳定性分析[J]. 岩土工程学报, 2020, 42(4): 705–713. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202004017.htm
LI Meng-zi, CAI Guo-qing, LI Hao, et al. Stability of infinite unsaturated soil slopes with tensile strength cut-off[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 705–713. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202004017.htm
|
[2] |
覃小华, 刘东升, 宋强辉, 等. 强降雨条件下考虑饱和渗透系数变异性的基岩型层状边坡可靠度分析[J]. 岩土工程学报, 2017, 39(6): 1065–1073. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201706014.htm
QIN Xiao-hua, LIU Dong-sheng, SONG Qiang-hui, et al. Reliability analysis of bedrock laminar slope stability considering variability of saturated hydraulic conductivity of soil under heavy rainfall[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1065–1073. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201706014.htm
|
[3] |
WU L Z, SELVADURAI A P S, ZHANG L M, et al. Poro-mechanical coupling influences on potential for rainfall-induced shallow landslides in unsaturated soils[J]. Advances in Water Resources, 2016, 98: 114–121. doi: 10.1016/j.advwatres.2016.10.020
|
[4] |
陈永贵, 蔡叶青, 叶为民, 等. 处置库膨润土胶体吸附迁移性及核素共同迁移特性研究进展[J]. 岩土工程学报, 2021, 43(12): 2149–2158. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202112001.htm
CHEN Yong-gui, CAI Ye-qing, YE Wei-min, et al. Progresses in researches on adsorption and migration properties of bentonite colloids and their co-migration with nuclide in repository[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2149–2158. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202112001.htm
|
[5] |
RICHARDS L A. Capillary conduction of liquids through porous mediums[J]. Physics, 1931, 1(5): 318–333. doi: 10.1063/1.1745010
|
[6] |
WU L Z, HUANG J S, FAN W, et al. Hydro-mechanical coupling in unsaturated soils covering a non-deformable structure[J]. Computers and Geotechnics, 2020, 117: 103287. doi: 10.1016/j.compgeo.2019.103287
|
[7] |
SRIVASTAVA R, YEH T C J. Analytical solutions for one-dimensional, transient infiltration toward the water table in homogeneous and layered soils[J]. Water Resources Research, 1991, 27(5): 753–762. doi: 10.1029/90WR02772
|
[8] |
TRACY F T. Clean two- and three-dimensional analytical solutions of Richards' equation for testing numerical solvers[J]. Water Resources Research, 2006, 42(8): 1–11.
|
[9] |
PANICONI C, PUTTI M. Physically based modeling in catchment hydrology at 50: survey and outlook[J]. Water Resources Research, 2015, 51(9): 7090–7129. doi: 10.1002/2015WR017780
|
[10] |
ZHA Y Y, YANG J Z, SHI L S, et al. Simulating one-dimensional unsaturated flow in heterogeneous soils with water content-based richards equation[J]. Vadose Zone Journal, 2013, 12(2): 1–13. doi: 10.2136/vzj2012.0142
|
[11] |
AN H, ICHIKAWA Y, TACHIKAWA Y, et al. Three-dimensional finite difference saturated-unsaturated flow modeling with nonorthogonal grids using a coordinate transformation method[J]. Water Resources Research, 2010, 46(11): 1–18.
|
[12] |
ZHANG Z Y, WANG W K, YEH T C J, et al. Finite analytic method based on mixed-form Richards' equation for simulating water flow in vadose zone[J]. Journal of Hydrology, 2016, 537: 146–156. doi: 10.1016/j.jhydrol.2016.03.035
|
[13] |
HERRERA P A, MASSABÓ M, BECKIE R D. A meshless method to simulate solute transport in heterogeneous porous media[J]. Advances in Water Resources, 2009, 32(3): 413–429. doi: 10.1016/j.advwatres.2008.12.005
|
[14] |
WU L Z, ZHU S R, PENG J B. Application of the Chebyshev spectral method to the simulation of groundwater flow and rainfall-induced landslides[J]. Applied Mathematical Modelling, 2020, 80: 408–425. doi: 10.1016/j.apm.2019.11.043
|
[15] |
LOTT P A, WALKER H F, WOODWARD C S, et al. An accelerated Picard method for nonlinear systems related to variably saturated flow[J]. Advances in Water Resources, 2012, 38: 92–101. doi: 10.1016/j.advwatres.2011.12.013
|
[16] |
BRENNER K, CANCÈS C. Improving Newton's method performance by parametrization: the case of the richards equation[J]. SIAM Journal on Numerical Analysis, 2017, 55(4): 1760–1785. doi: 10.1137/16M1083414
|
[17] |
ZENG J C, ZHA Y Y, YANG J Z. Switching the Richards' equation for modeling soil water movement under unfavorable conditions[J]. Journal of Hydrology, 2018, 563: 942–949. doi: 10.1016/j.jhydrol.2018.06.069
|
[18] |
ZHA Y Y, YANG J Z, YIN L H, et al. A modified Picard iteration scheme for overcoming numerical difficulties of simulating infiltration into dry soil[J]. Journal of Hydrology, 2017, 551: 56–69. doi: 10.1016/j.jhydrol.2017.05.053
|
[19] |
FARTHING M W, OGDEN F L. Numerical solution of richards' equation: a review of advances and challenges[J]. Soil Science Society of America Journal, 2017, 81(6): 1257–1269. doi: 10.2136/sssaj2017.02.0058
|
[20] |
CHÁVEZ-NEGRETE C, DOMÍNGUEZ-MOTA F J, SANTANA-QUINTEROS D. Numerical solution of Richards' equation of water flow by generalized finite differences[J]. Computers and Geotechnics, 2018, 101: 168–175. doi: 10.1016/j.compgeo.2018.05.003
|
[21] |
DOLEJŠÍ V, KURAZ M, SOLIN P. Adaptive higher-order space-time discontinuous Galerkin method for the computer simulation of variably-saturated porous media flows[J]. Applied Mathematical Modelling, 2019, 72: 276–305. doi: 10.1016/j.apm.2019.02.037
|
[22] |
CELIA M A, BOULOUTAS E T, ZARBA R L. A general mass-conservative numerical solution for the unsaturated flow equation[J]. Water Resources Research, 1990, 26(7): 1483–1496. doi: 10.1029/WR026i007p01483
|
[23] |
LIST F, RADU F A. A study on iterative methods for solving Richards' equation[J]. Computational Geosciences, 2016, 20(2): 341–353. doi: 10.1007/s10596-016-9566-3
|
[24] |
陈曦, 于玉贞, 程勇刚. 非饱和渗流Richards方程数值求解的欠松弛方法[J]. 岩土力学, 2012, 33(增刊1): 237–243. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2012S1039.htm
CHEN Xi, YU Yu-zhen, CHENG Yong-gang. Under-relaxation methods for numerical solution of Richards equation of variably saturated flow[J]. Rock and Soil Mechanics, 2012, 33(S1): 237–243. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2012S1039.htm
|
[25] |
李文涛, 马田田, 韦昌富. 基于自适应松弛Picard法的高效非饱和渗流有限元分析[J]. 岩土力学, 2016, 37(1): 256–262 https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201601031.htm
LI Wen-tao, MA Tian-tian, WEI Chang-fu. An efficient finite element procedure for unsaturated flow based on adaptive relaxed Picard method[J]. Rock and Soil Mechanics, 2016, 37(1): 256–262. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201601031.htm
|
[26] |
BENZI M. Preconditioning techniques for large linear systems: a survey[J]. Journal of Computational Physics, 2002, 182(2): 418–477. doi: 10.1006/jcph.2002.7176
|
[27] |
WANG K, ZHANG J. MSP: a class of parallel multistep successive sparse approximate inverse preconditioning strategies[J]. SIAM Journal on Scientific Computing, 2003, 24(4): 1141–1156. doi: 10.1137/S1064827502400832
|
[28] |
LIU C Y, KU C Y, HUANG C C, et al. Numerical solutions for groundwater flow in unsaturated layered soil with extreme physical property contrasts[J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2015, 16(7/8): 325–335.
|
[29] |
BRIGGS W L, HENSON V E, MCCORMICK S F. A Multigrid Tutorial, Second Edition[M]. Philadelphia: Society for Industrial and Applied Mathematics, 2000.
|
[30] |
IVERSON R M. Landslide triggering by rain infiltration[J]. Water Resources Research, 2000, 36(7): 1897–1910. doi: 10.1029/2000WR900090
|
[31] |
GARDNER W R. Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table[J]. Soil Science, 1958, 85(4): 228–232. doi: 10.1097/00010694-195804000-00006
|