Citation: | MA Wei-jia, QIN You, WANG Chang-de, CHEN Guo-xing. Experimental study on anisotropy of saturated coral sand under complex stress conditions[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 576-583. DOI: 10.11779/CJGE202203020 |
[1] |
马维嘉, 陈国兴, 李磊, 等. 循环荷载下饱和南沙珊瑚砂的液化特性试验研究[J]. 岩土工程学报, 2019, 41(5): 981–988. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17775.shtml
MA Wei-jia, CHEN Guo-xing, LI Lei, et al. Experimental study on liquefaction characteristics of saturated coral sand in Nansha Islands under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 981–988. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17775.shtml
|
[2] |
朱长歧, 陈海洋, 孟庆山, 等. 钙质砂颗粒内孔隙的结构特征分析[J]. 岩土力学, 2014, 35(7): 1831–1836. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201407003.htm
ZHU Chang-qi, CHEN Hai-yang, MENG Qing-shan, et al. Microscopic characterization of intra-pore structures of calcareous sands[J]. Rock and Soil Mechanics, 2014, 35(7): 1831–1836. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201407003.htm
|
[3] |
陈海洋, 汪稔, 李建国, 等. 钙质砂颗粒的形状分析[J]. 岩土力学, 2005, 26(9): 1389–1392. doi: 10.3969/j.issn.1000-7598.2005.09.008
CHEN Hai-yang, WANG Ren, LI Jian-guo, et al. Grain shape analysis of calcareous soil[J]. Rock and Soil Mechanics, 2005, 26(9): 1389–1392. (in Chinese) doi: 10.3969/j.issn.1000-7598.2005.09.008
|
[4] |
刘洋. 砂土的各向异性强度准则: 应力诱发各向异性[J]. 岩土工程学报, 2013, 35(3): 460–468. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract14994.shtml
LIU Yang. Anisotropic strength criteria of sand: stress-induced anisotropy [J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 460–468. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract14994.shtml
|
[5] |
KATO S, ISHIHARA K, TOWHATA I. Undrained shear characterstics of saturated sand under anisotropic consolidations[J]. Soils and Foundations, 2001, 41(1): 1–11. doi: 10.3208/sandf.41.1
|
[6] |
YOSHIMINE M, ISHIHARA K, VARGAS W. Effects of principal stress direction and intermediate principal stress on undrained shear behavior of sand[J]. Soils and Foundations, 1998, 38(3): 179–188. doi: 10.3208/sandf.38.3_179
|
[7] |
WONG R K S, ARTHUR J R F. Induced and inherent anisotropy in sand[J]. Géotechnique, 1985, 35(4): 471–481. doi: 10.1680/geot.1985.35.4.471
|
[8] |
SATO K, YOSHIDA N. Effect of Principal stress direction on undrained cyclic shear behaviour of dense sand[C]// Proeeedings of the Ninth International Offshore and Polar Engineering Conference, 1999: 542–547. Brest.
|
[9] |
CHEN G X, WU Q, ZHOU Z L, et al. Undrained anisotropy and cyclic resistance of saturated silt subjected to various patterns of principal stress rotation[J]. Géotechnique, 2020, 70(4): 317–331. doi: 10.1680/jgeot.18.P.180
|
[10] |
于艺林, 张建民, 童朝霞, 等. 定轴排水剪切试验中各向异性砂土的力学响应[J]. 岩土力学, 2011, 32(6): 1637–1642. doi: 10.3969/j.issn.1000-7598.2011.06.007
YU Yi-ling, ZHANG Jian-min, TONG Zhao-xia, et al. Behavior of anisotropic mica sand under fixed principal stress axes drained shear test[J]. Rock and Soil Mechanics, 2011, 32(6): 1637–1642. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.06.007
|
[11] |
罗强, 李晓磊, 王忠涛. 初始各向异性砂土不排水剪切特性试验研究[J]. 大连理工大学学报, 2019, 59(6): 629–637. https://www.cnki.com.cn/Article/CJFDTOTAL-DLLG201906012.htm
LUO Qiang, LI Xiao-lei, WANG Zhong-tao. Experimental study of shear behavior of inherent anisotropy sand in undrained condition[J]. Journal of Dalian University of Technology, 2019, 59(6): 629–637. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLLG201906012.htm
|
[12] |
杨仲轩, 李相崧, 明海燕. 砂土各向异性和不排水剪切特性研究[J]. 深圳大学学报(理工版), 2009, 26(2): 158–163. doi: 10.3969/j.issn.1000-2618.2009.02.010
YANG Zhong-xuan, LI Xiang-song, MING Hai-yan. Fabric anisotropy and undrained shear behavior of granular soil[J]. Journal of Shenzhen University (Science and Engineering), 2009, 26(2): 158–163. (in Chinese) doi: 10.3969/j.issn.1000-2618.2009.02.010
|
[13] |
陈伟, 张吾渝, 常立君, 等. 定向剪切应力路径下击实黄土各向异性试验研究[J]. 岩石力学与工程学报, 2015, 34(增刊2): 4320–4324. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S2082.htm
CHEN Wei, ZHANG Wu-yu, CHANG Li-jun, et al. Experimental study of anisotropy of compacted loess under directional shear stress path[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S2): 4320–4324. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S2082.htm
|
[14] |
AGHAJANI F H, SALEHZADEH H. Anisotropic behavior of the Bushehr carbonate sand in the Persian Gulf[J]. Arabian Journal of Geosciences, 2015, 8(10): 8197–8217. doi: 10.1007/s12517-014-1758-3
|
[15] |
HIGHT D W, GENS A, SYMES M J. The development of a new hollow cylinder apparatus for investigating the effects of principal stress rotation in soils[J]. Géotechnique, 1983, 33(4): 355–383. doi: 10.1680/geot.1983.33.4.355
|
[16] |
CHEN G X, ZHOU Z L, PAN H, et al. The influence of undrained cyclic loading patterns and consolidation states on the deformation features of saturated fine sand over a wide strain range[J]. Engineering Geology, 2016, 204: 77–93. doi: 10.1016/j.enggeo.2016.02.008
|
[17] |
Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density: ASTM D. 4254—14[S]. 2006.
|
[18] |
Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table: ASTM D. 4253—14[S]. 2006.
|
[19] |
土的工程分类标准: GB/T 50145—2007[S]. 2008.
GB/T 50145— 2007 Standard for Engineering Classification of Soil[S]. 2008. (in Chinese)
|
[20] |
孙宗勋. 南沙群岛珊瑚砂工程性质研究[J]. 热带海洋学报, 2000, 19(2): 1–8. doi: 10.3969/j.issn.1009-5470.2000.02.001
SUN Zong-xun. Engineering properties of coral sands in Nansha Islands[J]. Tropic Oceanology, 2000, 19(2): 1–8. (in Chinese) doi: 10.3969/j.issn.1009-5470.2000.02.001
|
[1] | ZHU Jun-gao, ZHU Cai-feng, WANG Si-rui. Experimental study on embedding amount of rubber film of triaxial specimens of coarse-grained soil[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2160-2166. DOI: 10.11779/CJGE202212002 |
[2] | XU Wei-wei, CHEN Sheng-shui, FU Zhong-zhi, JI En-yue. Measuring method for membrane penetration capacity of coarse-grained soil in triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1536-1541. DOI: 10.11779/CJGE202108019 |
[3] | WANG Yan-li, CHENG Zhan-lin, PAN Jia-jun, XU Han, WANG Jun-xiong. Development and preliminary application of a microfriction load-transfer plate for triaxial tests in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2316-2321. DOI: 10.11779/CJGE202012019 |
[4] | WU Ying-li, HUANGFU Ze-hua, GUO Wan-li, ZHANG Zhao-sheng. Influences of particle breakage on critical state of coarse-grained soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 25-28. DOI: 10.11779/CJGE2019S2007 |
[5] | SHAO Long-tan, LIU Gang, GUO Xiao-xia. Effects of strain localization of triaxial samples in post-failure state[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 385-394. DOI: 10.11779/CJGE201603001 |
[6] | SHI Wei-cheng, ZHU Jun-gao, DAI Guo-zhong, LU Xi. True triaxial tests on influence of spherical and deviatoric stresses on deformation of coarse-grained soil[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 776-783. DOI: 10.11779/CJGE201505002 |
[7] | SHAO Long-tan, LIU Xiao, GUO Xiao-xia, HUANG Chuan, JU Peng, YANG Song, XUE Jie. Whole surface deformation measurement of triaxial soil specimen based on digital image processing[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(3): 409-415. |
[8] | Stress-induced anisotropy of coarse-grained soil by true triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(5). |
[9] | JIANG Jingshan, CHENG Zhanlin, LIU Hanlong, DING Hongshun. Fabric analysis of two-dimensional tests for coarse-grained soils[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(5): 811-816. |
[10] | Zhou Hongkui. The Mechanism of Fracture of Soil Samples in Triaxial Tensile Test[J]. Chinese Journal of Geotechnical Engineering, 1984, 6(3): 11-23. |