• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
MA Wei-jia, QIN You, WANG Chang-de, CHEN Guo-xing. Experimental study on anisotropy of saturated coral sand under complex stress conditions[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 576-583. DOI: 10.11779/CJGE202203020
Citation: MA Wei-jia, QIN You, WANG Chang-de, CHEN Guo-xing. Experimental study on anisotropy of saturated coral sand under complex stress conditions[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 576-583. DOI: 10.11779/CJGE202203020

Experimental study on anisotropy of saturated coral sand under complex stress conditions

More Information
  • Received Date: December 23, 2020
  • Available Online: September 22, 2022
  • Anisotropy is the inherent property of coral sand. A series of undrained monotonic shear tests are carried out on the saturated Nansha coral sand by using the GDS hollow cylinder torsional shear apparatus. The effects of consolidation stress direction angle α0 and monotonic loading direction angle αm on the undrained response of saturated coral sand are investigated. The test results show that α0 and αm have significant influences on the undrained response of saturated coral sand. The undrained response characteristics of coral sand will become more complex under the coupling effects of α0 and αm. For all the test conditions considered, the excess pore water pressure ue of saturated coral sand presents contraction first and then dilatancy trend. The change of the shear resistance (SPT) and its effective angle (ϕPT) mobilized at the phase transformation state along with αm are significantly different for various α0. There is a unique linear correlation between SPT and the dimensionless parameter β, which is a cosine function with α0 and αm as variables. With the increase of the generalized shear stress qg, obvious strain hardening phenomenon can be observed for the samples.
  • [1]
    马维嘉, 陈国兴, 李磊, 等. 循环荷载下饱和南沙珊瑚砂的液化特性试验研究[J]. 岩土工程学报, 2019, 41(5): 981–988. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17775.shtml

    MA Wei-jia, CHEN Guo-xing, LI Lei, et al. Experimental study on liquefaction characteristics of saturated coral sand in Nansha Islands under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 981–988. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17775.shtml
    [2]
    朱长歧, 陈海洋, 孟庆山, 等. 钙质砂颗粒内孔隙的结构特征分析[J]. 岩土力学, 2014, 35(7): 1831–1836. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201407003.htm

    ZHU Chang-qi, CHEN Hai-yang, MENG Qing-shan, et al. Microscopic characterization of intra-pore structures of calcareous sands[J]. Rock and Soil Mechanics, 2014, 35(7): 1831–1836. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201407003.htm
    [3]
    陈海洋, 汪稔, 李建国, 等. 钙质砂颗粒的形状分析[J]. 岩土力学, 2005, 26(9): 1389–1392. doi: 10.3969/j.issn.1000-7598.2005.09.008

    CHEN Hai-yang, WANG Ren, LI Jian-guo, et al. Grain shape analysis of calcareous soil[J]. Rock and Soil Mechanics, 2005, 26(9): 1389–1392. (in Chinese) doi: 10.3969/j.issn.1000-7598.2005.09.008
    [4]
    刘洋. 砂土的各向异性强度准则: 应力诱发各向异性[J]. 岩土工程学报, 2013, 35(3): 460–468. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract14994.shtml

    LIU Yang. Anisotropic strength criteria of sand: stress-induced anisotropy [J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 460–468. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract14994.shtml
    [5]
    KATO S, ISHIHARA K, TOWHATA I. Undrained shear characterstics of saturated sand under anisotropic consolidations[J]. Soils and Foundations, 2001, 41(1): 1–11. doi: 10.3208/sandf.41.1
    [6]
    YOSHIMINE M, ISHIHARA K, VARGAS W. Effects of principal stress direction and intermediate principal stress on undrained shear behavior of sand[J]. Soils and Foundations, 1998, 38(3): 179–188. doi: 10.3208/sandf.38.3_179
    [7]
    WONG R K S, ARTHUR J R F. Induced and inherent anisotropy in sand[J]. Géotechnique, 1985, 35(4): 471–481. doi: 10.1680/geot.1985.35.4.471
    [8]
    SATO K, YOSHIDA N. Effect of Principal stress direction on undrained cyclic shear behaviour of dense sand[C]// Proeeedings of the Ninth International Offshore and Polar Engineering Conference, 1999: 542–547. Brest.
    [9]
    CHEN G X, WU Q, ZHOU Z L, et al. Undrained anisotropy and cyclic resistance of saturated silt subjected to various patterns of principal stress rotation[J]. Géotechnique, 2020, 70(4): 317–331. doi: 10.1680/jgeot.18.P.180
    [10]
    于艺林, 张建民, 童朝霞, 等. 定轴排水剪切试验中各向异性砂土的力学响应[J]. 岩土力学, 2011, 32(6): 1637–1642. doi: 10.3969/j.issn.1000-7598.2011.06.007

    YU Yi-ling, ZHANG Jian-min, TONG Zhao-xia, et al. Behavior of anisotropic mica sand under fixed principal stress axes drained shear test[J]. Rock and Soil Mechanics, 2011, 32(6): 1637–1642. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.06.007
    [11]
    罗强, 李晓磊, 王忠涛. 初始各向异性砂土不排水剪切特性试验研究[J]. 大连理工大学学报, 2019, 59(6): 629–637. https://www.cnki.com.cn/Article/CJFDTOTAL-DLLG201906012.htm

    LUO Qiang, LI Xiao-lei, WANG Zhong-tao. Experimental study of shear behavior of inherent anisotropy sand in undrained condition[J]. Journal of Dalian University of Technology, 2019, 59(6): 629–637. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLLG201906012.htm
    [12]
    杨仲轩, 李相崧, 明海燕. 砂土各向异性和不排水剪切特性研究[J]. 深圳大学学报(理工版), 2009, 26(2): 158–163. doi: 10.3969/j.issn.1000-2618.2009.02.010

    YANG Zhong-xuan, LI Xiang-song, MING Hai-yan. Fabric anisotropy and undrained shear behavior of granular soil[J]. Journal of Shenzhen University (Science and Engineering), 2009, 26(2): 158–163. (in Chinese) doi: 10.3969/j.issn.1000-2618.2009.02.010
    [13]
    陈伟, 张吾渝, 常立君, 等. 定向剪切应力路径下击实黄土各向异性试验研究[J]. 岩石力学与工程学报, 2015, 34(增刊2): 4320–4324. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S2082.htm

    CHEN Wei, ZHANG Wu-yu, CHANG Li-jun, et al. Experimental study of anisotropy of compacted loess under directional shear stress path[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S2): 4320–4324. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S2082.htm
    [14]
    AGHAJANI F H, SALEHZADEH H. Anisotropic behavior of the Bushehr carbonate sand in the Persian Gulf[J]. Arabian Journal of Geosciences, 2015, 8(10): 8197–8217. doi: 10.1007/s12517-014-1758-3
    [15]
    HIGHT D W, GENS A, SYMES M J. The development of a new hollow cylinder apparatus for investigating the effects of principal stress rotation in soils[J]. Géotechnique, 1983, 33(4): 355–383. doi: 10.1680/geot.1983.33.4.355
    [16]
    CHEN G X, ZHOU Z L, PAN H, et al. The influence of undrained cyclic loading patterns and consolidation states on the deformation features of saturated fine sand over a wide strain range[J]. Engineering Geology, 2016, 204: 77–93. doi: 10.1016/j.enggeo.2016.02.008
    [17]
    Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density: ASTM D. 4254—14[S]. 2006.
    [18]
    Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table: ASTM D. 4253—14[S]. 2006.
    [19]
    土的工程分类标准: GB/T 50145—2007[S]. 2008.

    GB/T 50145— 2007 Standard for Engineering Classification of Soil[S]. 2008. (in Chinese)
    [20]
    孙宗勋. 南沙群岛珊瑚砂工程性质研究[J]. 热带海洋学报, 2000, 19(2): 1–8. doi: 10.3969/j.issn.1009-5470.2000.02.001

    SUN Zong-xun. Engineering properties of coral sands in Nansha Islands[J]. Tropic Oceanology, 2000, 19(2): 1–8. (in Chinese) doi: 10.3969/j.issn.1009-5470.2000.02.001
  • Related Articles

    [1]ZHU Jun-gao, ZHU Cai-feng, WANG Si-rui. Experimental study on embedding amount of rubber film of triaxial specimens of coarse-grained soil[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2160-2166. DOI: 10.11779/CJGE202212002
    [2]XU Wei-wei, CHEN Sheng-shui, FU Zhong-zhi, JI En-yue. Measuring method for membrane penetration capacity of coarse-grained soil in triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1536-1541. DOI: 10.11779/CJGE202108019
    [3]WANG Yan-li, CHENG Zhan-lin, PAN Jia-jun, XU Han, WANG Jun-xiong. Development and preliminary application of a microfriction load-transfer plate for triaxial tests in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2316-2321. DOI: 10.11779/CJGE202012019
    [4]WU Ying-li, HUANGFU Ze-hua, GUO Wan-li, ZHANG Zhao-sheng. Influences of particle breakage on critical state of coarse-grained soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 25-28. DOI: 10.11779/CJGE2019S2007
    [5]SHAO Long-tan, LIU Gang, GUO Xiao-xia. Effects of strain localization of triaxial samples in post-failure state[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 385-394. DOI: 10.11779/CJGE201603001
    [6]SHI Wei-cheng, ZHU Jun-gao, DAI Guo-zhong, LU Xi. True triaxial tests on influence of spherical and deviatoric stresses on deformation of coarse-grained soil[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 776-783. DOI: 10.11779/CJGE201505002
    [7]SHAO Long-tan, LIU Xiao, GUO Xiao-xia, HUANG Chuan, JU Peng, YANG Song, XUE Jie. Whole surface deformation measurement of triaxial soil specimen based on digital image processing[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(3): 409-415.
    [8]Stress-induced anisotropy of coarse-grained soil by true triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(5).
    [9]JIANG Jingshan, CHENG Zhanlin, LIU Hanlong, DING Hongshun. Fabric analysis of two-dimensional tests for coarse-grained soils[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(5): 811-816.
    [10]Zhou Hongkui. The Mechanism of Fracture of Soil Samples in Triaxial Tensile Test[J]. Chinese Journal of Geotechnical Engineering, 1984, 6(3): 11-23.

Catalog

    Article views (244) PDF downloads (122) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return