• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
FU Ying-peng, LIAO Hong-jian, LÜ Long-long, CHAI Xiao-qing. Hysteretic model for fitting soil-water characteristic curves considering contact angle and grain-size distribution[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 502-513. DOI: 10.11779/CJGE202203012
Citation: FU Ying-peng, LIAO Hong-jian, LÜ Long-long, CHAI Xiao-qing. Hysteretic model for fitting soil-water characteristic curves considering contact angle and grain-size distribution[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 502-513. DOI: 10.11779/CJGE202203012

Hysteretic model for fitting soil-water characteristic curves considering contact angle and grain-size distribution

More Information
  • Received Date: February 23, 2021
  • Available Online: September 22, 2022
  • The soil-water characteristic curve (SWCC) describes the relationship between water content (or saturation) and matric suction (or soil-water potential) in unsaturated soils. It is worth noting that the amount of water stored in soils during the drying process caused by evaporation or gravity drainage is more than that during the wetting process caused by infiltration and capillary rise under the same matric suction level. This phenomenon is described by the hysteretic behavior of the SWCCs. Based on existing knowledge, the contact angle and the ink-bottle effect caused by the grain-size distribution (or pore-size distribution) are the two main factors that affect the hysteretic behaviors of the SWCCs. First, the behaviors of a liquid drop sitting on an inclined surface are investigated by the numerical method, and a relationship between the contact angle and the water content during the wetting and drying processes is proposed based on the principle of the minimum potential energy. Second, the expression for the volume of the liquid bridge is modified to make the Young-Laplace equation keep valid in calculating the matric suction in the boundary affected zone, transition zone and the part of the residual zone on the w-lns plane. Finally, an analytical model for analyzing the hysteretic behaviors of SWCCs is proposed after introducing the Roshin-Rammler grain-size distribution function. The model has a clear physical meaning, and the parameters can be obtained easily. Moreover, the model can describe the hysteretic behaviors of the SWCCs. Taking the SWCC of recompacted loess in a foundation pit in Qujiang, Xi'an as an example, the model is verified. The results show that the proposed model can well reflect the nonlinear relationship between the matric suction and the water content. The model can also be used for studying the shear strength and the constitutive model for unsaturated soils.
  • [1]
    高游, 孙德安, 张俊然, 等. 考虑孔隙比和水力路径影响的非饱和土土水特性研究[J]. 岩土工程学报, 2019, 41(12): 2191–2196. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18065.shtml

    GAO You, SUN De-an, ZHANG Jun-ran, et al. Soil-water characteristics of unsaturated soils considering initial void ratio and hydraulic path[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2191–2196. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18065.shtml
    [2]
    ANANDARAJAH A, AMARASINGHE P M. Microstructural investigation of soil suction and hysteresis of fine-grained soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(1): 38–46. doi: 10.1061/(ASCE)GT.1943-5606.0000555
    [3]
    刘艳, 于建涛. 动态土水特征曲线滞后模型研究[J]. 岩土工程学报, 2021, 43(1): 62–68. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18420.shtml

    LIU Yan, YU Jian-tao. Hysteresis model for soil-water characteristic curve under dynamic conditions[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 62–68. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18420.shtml
    [4]
    ARYA L M, PARIS J F. A physicoempirical model to predict the soil moisture characteristic from particle‐size distribution and bulk density data[J]. Soil Science Society of America Journal, 1981, 45(6): 1023–1030. doi: 10.2136/sssaj1981.03615995004500060004x
    [5]
    FREDLUND M D, WILSON G W, FREDLUND D G. Use of the grain-size distribution for estimation of the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 2002, 39(5): 1103–1117. doi: 10.1139/t02-049
    [6]
    ASSOULINE S, TESSIER D, BRUAND A. A conceptual model of the soil water retention curve[J]. Water Resources Research, 1998, 34(2): 223–231. doi: 10.1029/97WR03039
    [7]
    郑方, 刘奉银, 王磊. 粒度对非饱和土土水特征曲线滞回特性的影响[J]. 水利与建筑工程学报, 2019, 17(5): 19–24. https://www.cnki.com.cn/Article/CJFDTOTAL-FSJS201905003.htm

    ZHENG Fang, LIU Feng-yin, WANG Lei. Influence of unsaturated soil granularity on hysteretic behavior of soil-water characteristic curve[J]. Journal of Water Resources and Architectural Engineering, 2019, 17(5): 19–24. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FSJS201905003.htm
    [8]
    陈宇龙, 内村太郎. 粒径对土持水性能的影响[J]. 岩石力学与工程学报, 2016, 35(7): 1474–1482. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201607018.htm

    CHEN Yu-long Uchimura Taro. Influence of particle size on water retention of soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(7): 1474–1482. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201607018.htm
    [9]
    朱青青, 苗强强, 陈正汉, 等. 考虑基质势影响的非饱和土水分运移规律测试系统研制[J]. 岩土工程学报, 2016, 38(增刊2): 240–244. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16687.shtml

    ZHU Qing-qing, MIAO Qiang-qiang, CHEN Zheng-han, et al. Development of test system for unsaturated soil water movement law considering influence of matrix potential[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(S2): 240–244. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16687.shtml
    [10]
    姚仰平, 王琳. 影响锅盖效应因素的研究[J]. 岩土工程学报, 2018, 40(8): 1373–1382. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17471.shtml

    YAO Yang-ping, WANG Lin. Influence factors for "pot-cover effect"[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1373–1382. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17471.shtml
    [11]
    VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892–898. doi: 10.2136/sssaj1980.03615995004400050002x
    [12]
    FREDLUND D G, XING A. Equations for the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 1994, 31(4): 521–532. doi: 10.1139/t94-061
    [13]
    BROOKS R H, COREY A T. Hydraulic properties of porous media and their relation to drainage design[J]. Transactions of the ASAE, 1964, 7(1): 26–0028. doi: 10.13031/2013.40684
    [14]
    BRUTSAERT W. Some methods of calculating unsaturated permeability[J]. Transactions of the ASAE, 1967, 10(3): 400–404. doi: 10.13031/2013.39683
    [15]
    ZAPATA C E, HOUSTON W N, HOUSTON S L, et al. Soil–water characteristic curve variability[J]. Advances in Unsaturated Geotechnics, 2000: 84–124.
    [16]
    ZHAI Q, RAHARDJO H. Quantification of uncertainties in soil–water characteristic curve associated with fitting parameters[J]. Engineering Geology, 2013, 163: 144–152. doi: 10.1016/j.enggeo.2013.05.014
    [17]
    LIKOS W J, LU N, GODT J W. Hysteresis and uncertainty in soil water-retention curve parameters[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 140(4): 04013050.
    [18]
    LI P, LI T L, VANAPALLI S K. Prediction of soil-water characteristic curve for Malan loess in Loess Plateau of China[J]. Journal of Central South University, 2018, 25(2): 432–447. doi: 10.1007/s11771-018-3748-1
    [19]
    BAYAT H, MAZAHERI B, MOHANTY B P. Estimating soil water characteristic curve using landscape features and soil thermal properties[J]. Soil and Tillage Research, 2019, 189: 1–14. doi: 10.1016/j.still.2018.12.018
    [20]
    TOMASELLA J, HODNETT M G. Estimating soil water retention characteristics from limited data in Brazilian Amazonia[J]. Soil Science, 1998, 163(3): 190–202. doi: 10.1097/00010694-199803000-00003
    [21]
    PHAM K, KIM D, YOON Y, et al. Analysis of neural network based pedotransfer function for predicting soil water characteristic curve[J]. Geoderma, 2019, 351: 92–102. doi: 10.1016/j.geoderma.2019.05.013
    [22]
    WEI C, DEWOOLKAR M M. Formulation of capillary hysteresis with internal state variables[J]. Water Resources Research, 2006, 42(7): 260–273.
    [23]
    LI X S. Modelling of hysteresis response for arbitrary wetting/drying paths[J]. Computers and Geotechnics, 2005, 32(2): 133–137. doi: 10.1016/j.compgeo.2004.12.002
    [24]
    NIMMO J R. Semiempirical model of soil water hysteresis[J]. Soil Science Society of America Journal, 1992, 56(6): 1723–1730. doi: 10.2136/sssaj1992.03615995005600060011x
    [25]
    GAN Y, MAGGI F, BUSCARNERA G, et al. A particle–water based model for water retention hysteresis[J]. Géotechnique Letters, 2013, 3(4): 152–161. doi: 10.1680/geolett.13.00046
    [26]
    MUALEM Y. Extension of the similarity hypothesis used for modeling the soil water characteristics[J]. Water Resources Research, 1977, 13(4): 773–780. doi: 10.1029/WR013i004p00773
    [27]
    MUALEM Y. Prediction of the soil boundary wetting curve[J]. Soil Science, 1984, 137(6): 379–390. doi: 10.1097/00010694-198406000-00001
    [28]
    刘艳, 赵成刚, 李舰, 等. 相间交界面对非饱和土应力状态的影响[J]. 力学学报, 2017, 49(2): 335–343. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201702010.htm

    LIU Yan, ZHAO Cheng-gang, LI Jian, et al. The influence of interfaces on the stress state in unsaturated soils[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 335–343. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201702010.htm
    [29]
    张鹏程, 汤连生, 姜力群, 等. 基质吸力与含水量及干密度定量关系研究[J]. 岩石力学与工程学报, 2013, 31(增刊1): 2792–2797. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S1027.htm

    ZHANG Peng-cheng, TANG Lian-sheng, JIANG Li-qun, et al. Research of quantitative relations of matric suction with water content and dry density[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 31(S1): 2792–2797. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S1027.htm
    [30]
    ZHOU A N. A contact angle-dependent hysteresis model for soil–water retention behaviour[J]. Computers and Geotechnics, 2013, 49: 36–42. doi: 10.1016/j.compgeo.2012.10.004
    [31]
    LIKOS W J, LU N. Hysteresis of capillary stress in unsaturated granular soil[J]. Journal of Engineering Mechanics, 2004, 130(6): 646–655. doi: 10.1061/(ASCE)0733-9399(2004)130:6(646)
    [32]
    WANG X, LI J. A novel liquid bridge model for estimating SWCC and permeability of granular material[J]. Powder Technology, 2015, 275: 121–130. doi: 10.1016/j.powtec.2015.01.044
    [33]
    SOLIGNO G, DIJKSTRA M, VAN ROIJ R. The equilibrium shape of fluid-fluid interfaces: derivation and a new numerical method for Young's and Young-Laplace equations[J]. The Journal of Chemical Physics, 2014, 141(24): 244702. doi: 10.1063/1.4904391
    [34]
    BRAKKE K A. The surface evolver[J]. Experimental Mathematics, 1992, 1(2): 141–165. doi: 10.1080/10586458.1992.10504253
    [35]
    CHOU T H, HONG S J, SHENG Y J, et al. Drops sitting on a tilted plate: receding and advancing pinning[J]. Langmuir, 2012, 28(11): 5158–5166. doi: 10.1021/la300257t
    [36]
    BEREJNOV V, THORNE R E. Enhancing drop stability in protein crystallization by chemical patterning[J]. Acta Crystallographica Section D, Biological Crystallography, 2005, 61(12): 1563–1567. doi: 10.1107/S0907444905028866
    [37]
    THAMPI S P, GOVINDARAJAN R. Minimum energy shapes of one-side-pinned static drops on inclined surfaces[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2011, 84(4): 046304. doi: 10.1103/PhysRevE.84.046304
    [38]
    SANTOS M J, VELASCO S, WHITE J A. Simulation analysis of contact angles and retention forces of liquid drops on inclined surfaces[J]. Langmuir, 2012, 28(32): 11819–11826. doi: 10.1021/la3019293
    [39]
    FISHER R A. On the capillary forces in an ideal soil; correction of formulae given by WB Haines[J]. The Journal of Agricultural Science, 1926, 16(3): 492–505. doi: 10.1017/S0021859600007838
    [40]
    NISHIYAMA N, YOKOYAMA T. Water film thickness in unsaturated porous media: effect of pore size, pore solution chemistry, and mineral type[J]. Water Resources Research, 2021, 57, e2020WR029257.
    [41]
    SMITH W O, FOOTE P D, BUSANG P F. Packing of homogeneous spheres[J]. Physical Review, 1929, 34(9): 1271–1274. doi: 10.1103/PhysRev.34.1271
    [42]
    BUTT H J, KAPPL M. Normal capillary forces[J]. Advances in Colloid and Interface Science, 2009, 146(1/2): 48–60.
    [43]
    黎澄生, 孔令伟, 柏巍, 等. 土–水特征曲线滞后阻塞模型[J]. 岩土力学, 2018, 39(2): 59–604.

    LI Cheng-sheng, KONG Ling-Wei, Bai Wei, et al. Hysteresis model of soil-water characteristic curve[J]. Rock and Soil Mechanics, 39(2): 598–604. (in Chinese)
    [44]
    KASANGAKI G J, MEDERO G M, OOI J Y. Factors Influencing Water Retention Characteristics of Granular Materials[M]// Multiphysical Testing of Soils and Shales, Berlin: Springer, 2013.
    [45]
    ESMAEELNEJAD L, SIAVASHI F, SEYEDMOHAMMADI J, et al. The best mathematical models describing particle size distribution of soils[J]. Modeling Earth Systems and Environment, 2016, 2(4): 1–11.
    [46]
    ROSIN P, RAMMLER E. The laws governing the fineness of powdered coal[J]. Journal of the Institute of Fuel, 1933, 7: 29–36.
    [47]
    井彦林, 王昊, 陶春亮, 等. 非饱和黄土的接触角与孔隙特征试验[J]. 煤田地质与勘探, 2019, 47(5): 157–162. doi: 10.3969/j.issn.1001-1986.2019.05.022

    JING Yan-lin, WANG Hao, TAO Chun-liang, et al. Experimental study on contact angle and pore characteristics of unsaturated loess[J]. Coal Geology & Exploration, 2019, 47(5): 157–162. (in Chinese) doi: 10.3969/j.issn.1001-1986.2019.05.022
    [48]
    陶高梁, 朱学良, 胡其志, 等. 黏性土压缩过程临界孔径现象及固有分形特征[J]. 岩土力学, 2019, 40(1): 81–90. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901005.htm

    TAO Gao-liang, ZHU Xue-liang, HU Qi-zhi, et al. Critical pore-size phenomenon and intrinsic fractal characteristic of clay in process of compression[J]. Rock and Soil Mechanics, 2019, 40(1): 81–90. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901005.htm
    [49]
    SHIRAZI M A, BOERSMA L, HART J W. A unifying quantitative analysis of soil texture: improvement of precision and extension of scale[J]. Soil Science Society of America Journal, 1988, 52(1): 181–190. doi: 10.2136/sssaj1988.03615995005200010032x
    [50]
    SHIRAZI M A, BOERSMA L. A unifying quantitative analysis of soil texture[J]. Soil Science Society of America Journal, 1984, 48(1): 142–147. doi: 10.2136/sssaj1984.03615995004800010026x
    [51]
    刘建维. 面向润湿作用的黄土结构性及吸附特性试验研究[D]. 西安: 长安大学, 2017.

    LIU Jian-wei. Experimental Study on the Structure and Adsorption Characteristics of Loess oriented to Wetting Function[D]. Xi'an: Changan University, 2017. (in Chinese)
    [52]
    栾茂田, 李顺群, 杨庆. 非饱和土的理论土-水特征曲线[J]. 岩土工程学报, 2005, 27(6): 611–615. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract11688.shtml

    LUAN Mao-tian, LI Shun-qun, YANG Qing. Theoretical soil-water characteristic curve for unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(6): 611–615. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract11688.shtml
    [53]
    刘星志, 吴悦, 潘诗婷, 等. 颗粒级配对非饱和红土土-水特征曲线的影响[J]. 水利水运工程学报, 2018(5): 103–110. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY201805015.htm

    LIU Xing-zhi, WU Yue, PAN Shi-ting, et al. Influences of different grain size contents on soil-water characteristic curve of unsaturated laterite based on fractal theory[J]. Hydro-Science and Engineering, 2018(5): 103–110. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY201805015.htm
    [54]
    穆青翼, 党影杰, 董琪, 等. 原状和压实黄土持水特性及湿陷性对比试验研究[J]. 岩土工程学报, 2019, 41(8): 1496–1504. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17975.shtml

    MU Qing-yi, DANG Ying-jie, DONG Qi, et al. Water-retention characteristics and collapsibity behaviors: comparison between intact and compacted loesses[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1496–1504. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17975.shtml
    [55]
    伏映鹏, 廖红建, 刘雪刚, 等. 非线性连续卸荷路径下黄土的强度与变形特性研究[J]. 重庆大学学报, 2021, 44(5): 26–37. https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE202105004.htm

    FU Ying-peng, LIAO Hong-jian, LIU Xue-gang, et al. Study on strength and deformation characteristics of loess under nonlinear continuous unloading path[J]. Journal of Chongqing University, 2021, 44(5): 26–37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE202105004.htm
  • Related Articles

    [1]ZHAN Zheng-gang, ZHANG He-zuo, CHENG Rui-lin, QIU Huan-feng. Application of methods for life-cycle deformation control of high concrete-faced rockfill dams[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1141-1147. DOI: 10.11779/CJGE202206019
    [2]LI Lin, LI Jing-pei, SUN De-an, ZHANG Ling-xiang. Prediction method for time-dependent load-settlement relationship of a jacked pile[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2327-2334. DOI: 10.11779/CJGE201712023
    [3]LIU Xin, GAN Liang-qin, SHENG Ke, HONG Bao-ning. Experimental study on service life of foamed mixture lightweight soil based on method of accelerated stress tests[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1793-1799. DOI: 10.11779/CJGE201710006
    [4]HU Bin, WANG Xin-gang, FENG Xiao-la, HU Qi-chen, WANG Wei. Analytical prediction and numerical simulation of effect of a deep excavation project of wuhan metro on nearby viaduct[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 368-373. DOI: 10.11779/CJGE2014S2064
    [5]DENG Dong-ping, LI Liang, ZHAO Lian-heng, LIU Jian-hao. Prediction of service life of pre-stressed anchorage bolt (cable) due to corrosion expansion[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1464-1472. DOI: 10.11779/CJGE201408012
    [6]Martin Wieland, R.Peter Brenner. Life-span of concrete and embankment dams and economic benefits of dam safety projects[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(11): 1692-1698.
    [7]HAN Xuan, LI Ning. A predicting model for ground movement induced by non-uniform convergence of tunnel[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(3): 347-352.
    [8]REN Jianxi, JIANG Yu, GE Xiurun. Test and analysis on rock fatigue life due to affecting factors under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(11): 47-50.
    [9]Settlement prediction methods considering creep[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(3): 416-418.
    [10]Zhang Zhenying, Wu Shiming, Chen Yunmin. Experimental research on the parameter of life rubbish in city[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(1): 38-42.
  • Cited by

    Periodical cited type(11)

    1. 吕宏强,唐天成,包晨宇. 基于光滑粒子流体动力学法的流固共轭自然对流传热数值模拟. 航空学报. 2025(05): 180-196 .
    2. 付永帅. 基于机器视觉的水利枢纽工程生态脆弱区地基渗流仿真分析. 水利规划与设计. 2024(01): 89-93+102 .
    3. 高玉峰,王玉杰,张飞,姬建,陈亮,倪钧钧,张卫杰,宋健,杨尚川. 边坡工程与堤坝工程研究进展. 土木工程学报. 2024(08): 97-118 .
    4. 张德沧,毛佳,戴妙林,邵琳玉,赵兰浩. 圆化离散单元法的改进及其在岩体断裂过程中的应用. 岩土工程学报. 2024(09): 1974-1983 . 本站查看
    5. 黄帅,刘传正,GODA Katsuichiro. 光滑粒子流体动力学方法在饱和边坡地震滑移大变形中的适用性研究. 岩土工程学报. 2023(02): 336-344+443 . 本站查看
    6. 桂滨,林岩松,关彦斌. 高压浆液挤压饱和土体变形模拟的SPH方法. 公路交通科技. 2023(03): 51-57 .
    7. 王占彬,张卫杰,张健,代登辉,高玉峰. 基于并行SPH方法的地震滑坡对桥桩的冲击作用. 湖南大学学报(自然科学版). 2022(07): 54-65 .
    8. 张卫杰,余瑞华,陈宇,高玉峰,黄雨. 强度指标影响下滑坡运动特征及参数反分析. 岩土工程学报. 2022(12): 2304-2311 . 本站查看
    9. 戴轩,郑刚,程雪松,霍海峰. 基于DEM-CFD方法的基坑工程漏水漏砂引发地层运移规律的数值模拟. 岩石力学与工程学报. 2019(02): 396-408 .
    10. 杜彬,邱兆勇. 防渗墙技术在堤坝施工中的应用. 水利科学与寒区工程. 2019(02): 123-125 .
    11. 张卫杰,郑虎,王占彬,高玉峰. 基于三维并行SPH模型的土体流滑特性研究. 工程地质学报. 2018(05): 1279-1284 .

    Other cited types(6)

Catalog

    Article views (335) PDF downloads (131) Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return