NIAN Ting-kai, SONG Xiao-long, ZHANG Hao, RONG Ze. Dynamic stability evaluation of submarine slopes with hydrate reservoir under influences of heat injection exploitation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2167-2176. DOI: 10.11779/CJGE202212003
    Citation: NIAN Ting-kai, SONG Xiao-long, ZHANG Hao, RONG Ze. Dynamic stability evaluation of submarine slopes with hydrate reservoir under influences of heat injection exploitation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2167-2176. DOI: 10.11779/CJGE202212003

    Dynamic stability evaluation of submarine slopes with hydrate reservoir under influences of heat injection exploitation

    More Information
    • Received Date: November 14, 2021
    • Available Online: December 13, 2022
    • The heat injection exploitation will destroy the temperature and pressure balance of hydrate reservoirs, cause hydrate dissociation, lead to the dramatic increase of pore pressure of strata, and then induce the instability of submarine slopes along the hydrate reservoirs or even a large-scale submarine landslide. Therefore, it is very important to investigate the dynamic response of the hydrate reservoirs and the real-time stability of the submarine slopes after environmental changes. First, a solving equation for calculating the real-time excess pore pressure considering thermo-hydro-chemical (THC) coupling is derived, and the internal relation between the hydrate saturation and the excess pore pressure is also established. Further, a simplified evaluation approach for the dynamic stability of the submarine slopes under the influences of heat injection exploitation of the hydrate reservoirs is proposed based on the theory of infinite slope limit equilibrium analysis, and the corresponding numerical simulation and calculation code are developed. This approach is employed to analyze the submarine slope in the second hydrate extraction area on the northern continental slope of the South China Sea. The evolution characteristics of the submarine slopes in the process of heat injection exploitation of the hydrate reservoirs, such as the temperature profile, hydrate saturation profile and dynamic stability factors, are explored, and the reasonable mining suggestions are put forward. The research results provide an important basis for understanding the mechanism of instability of submarine slopes caused by hydrate dissociation, realizing the safe and sustainable development of the hydrate reservoirs and the scientific assessment of marine geological disaster risks.
    • [1]
      KVENVOLDEN K A. Gas hydrates-geological perspective and global change[J]. Reviews of Geophysics, 1993, 31(2): 173–187. doi: 10.1029/93RG00268
      [2]
      SLOAN E D Jr. Fundamental principles and applications of natural gas hydrates[J]. Nature, 2003, 426(6964): 353–363. doi: 10.1038/nature02135
      [3]
      BOSWELL R, COLLETT T S, FRYE M, et al. Subsurface gas hydrates in the northern Gulf of Mexico[J]. Marine and Petroleum Geology, 2012, 34(1): 4–30. doi: 10.1016/j.marpetgeo.2011.10.003
      [4]
      FUJII T, SUZUKI K, TAKAYAMA T, et al. Geological setting and characterization of a methane hydrate reservoir distributed at the first offshore production test site on the Daini-Atsumi Knoll in the eastern Nankai Trough, Japan[J]. Marine and Petroleum Geology, 2015, 66: 310–322. doi: 10.1016/j.marpetgeo.2015.02.037
      [5]
      萧惠中, 张振. 全球主要国家天然气水合物研究进展[J]. 海洋开发与管理, 2021, 38(1): 36–41. doi: 10.3969/j.issn.1005-9857.2021.01.006

      XIAO Hui-zhong, ZHANG Zhen. A review on gas hydrates research progress of global main countries[J]. Ocean Development and Management, 2021, 38(1): 36–41. (in Chinese) doi: 10.3969/j.issn.1005-9857.2021.01.006
      [6]
      王力峰, 付少英, 梁金强, 等. 全球主要国家水合物探采计划与研究进展[J]. 中国地质, 2017, 44(3): 439-448. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201703004.htm

      WANG Li-feng, FU Shao-ying, LIANG Jin-qiang, et al. A review on gas hydrate developments propped by worldwide national projects[J]. Geology in China, 2017, 44(3): 439-448. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201703004.htm
      [7]
      袁益龙. 海洋天然气水合物降压开采潜力及力学稳定性数值模拟研究[D]. 长春: 吉林大学, 2019.

      YUAN Yi-long. Numerical Simulation on Gas Production Potential and the Geo-Mechanical Stability From Marine Natural Gas Hydrate Through Depressurization[D]. Changchun: Jilin University, 2019. (in Chinese)
      [8]
      宁伏龙, 梁金强, 吴能友, 等. 中国天然气水合物赋存特征[J]. 天然气工业, 2020, 40(8): 1–24, 203. doi: 10.3787/j.issn.1000-0976.2020.08.001

      NING Fu-long, LIANG Jin-qiang, WU Neng-you, et al. Reservoir characteristics of natural gas hydrates in China[J]. Natural Gas Industry, 2020, 40(8): 1–24, 203. (in Chinese) doi: 10.3787/j.issn.1000-0976.2020.08.001
      [9]
      张伟, 梁金强, 陆敬安, 等. 中国南海北部神狐海域高饱和度天然气水合物成藏特征及机制[J]. 石油勘探与开发, 2017, 44(5): 670–680. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201705003.htm

      ZHANG Wei, LIANG Jin-qiang, LU Jin-gan, et al. Accumulation features and mechanisms of high saturation natural gas hydrate in Shenhu Area, northern South China Sea[J]. Petroleum Exploration and Development, 2017, 44(5): 670–680. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201705003.htm
      [10]
      WANG J L, WU S G, KONG X, et al. Geophysical characterization of a fine-grained gas hydrate reservoir in the Shenhu area, northern South China Sea: integration of seismic data and downhole logs[J]. Marine and Petroleum Geology, 2018, 92: 895–903. doi: 10.1016/j.marpetgeo.2018.03.020
      [11]
      叶建良, 秦绪文, 谢文卫, 等. 中国南海天然气水合物第二次试采主要进展[J]. 中国地质, 2020, 47(3): 557–568. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202003002.htm

      YE Jian-liang, QIN Xu-wen, XIE Wen-wei, et al. Main progress of the second gas hydrate trial production in the South China Sea[J]. Geology in China, 2020, 47(3): 557–568. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202003002.htm
      [12]
      LI A, DAVIES R J, YANG J X. Gas trapped below hydrate as a primer for submarine slope failures[J]. Marine Geology, 2016, 380: 264–271. doi: 10.1016/j.margeo.2016.04.010
      [13]
      NIAN T K, SONG X L, ZHAO W, et al. Submarine slope failure due to overpressure fluid associated with gas hydrate dissociation[J]. Environmental Geotechnics, 2022, 9(2): 108–123. doi: 10.1680/jenge.19.00070
      [14]
      JIANG M J, SUN C, CROSTA G B, et al. A study of submarine steep slope failures triggered by thermal dissociation of methane hydrates using a coupled CFD-DEM approach[J]. Engineering Geology, 2015, 190: 1–16. doi: 10.1016/j.enggeo.2015.02.007
      [15]
      NIXON M F, LH G J. Submarine slope failure due to gas hydrate dissociation: a preliminary quantification[J]. Canadian Geotechnical Journal, 2007, 44(3): 314–325. doi: 10.1139/t06-121
      [16]
      XIONG Z S, ZHANG J H. Effect of dissociation of gas hydrate on the stability of submarine slope[C]//31st ASME International Conference on Ocean, Offshore and Arctic Engineering. Rio de Janeiro, 2012.
      [17]
      ZHANG H T, LUO X Q, BI J F, et al. Submarine slope stability analysis during natural gas hydrate dissociation[J]. Marine Georesources & Geotechnology, 2019, 37(4): 467–476.
      [18]
      CHEN Y M, ZHANG L L, LIAO C C, et al. A two-stage probabilistic approach for the risk assessment of submarine landslides induced by gas hydrate exploitation[J]. Applied Ocean Research, 2020, 99: 102158. doi: 10.1016/j.apor.2020.102158
      [19]
      刘锋, 吴时国, 孙运宝. 南海北部陆坡水合物分解引起海底不稳定性的定量分析[J]. 地球物理学报, 2010, 53(4): 946–953. doi: 10.3969/j.issn.0001-5733.2010.04.019

      LIU Feng, WU Shi-guo, SUN Yun-bao. A quantitative analysis for submarine slope instability of the northern South China Sea due to gas hydrate dissociation[J]. Chinese Journal of Geophysics, 2010, 53(4): 946–953. (in Chinese) doi: 10.3969/j.issn.0001-5733.2010.04.019
      [20]
      GROZIC J L H. Interplay Between gas hydrates and submarine slope failure[C]// Submarine Mass Movements and Their Consequences-4th International Symposium, Dordrecht, 2010.
      [21]
      ZHU C Q, JIA Y G. Submarine slope stability analysis during natural gas hydrate dissociation: Discussion[J]. Marine Georesources & Geotechnology, 2020, 38(6): 753–754.
      [22]
      ARCHER D, BUFFETT B, BROVKIN V. Ocean methane hydrates as a slow tipping point in the global carbon cycle[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(49): 20596–20601. doi: 10.1073/pnas.0800885105
      [23]
      XU W Y, RUPPEL C. Predicting the occurrence, distribution, and evolution of methane gas hydrate in porous marine sediments[J]. Journal of Geophysical Research: Solid Earth, 1999, 104(B3): 5081–5095. doi: 10.1029/1998JB900092
      [24]
      SLOAN E D, KOH C A. Clathrate Hydrates of Natural Gases[M]. 3ir ed. New York: Marcel Dekker, 2008.
      [25]
      DAVIE M K, ZATSEPINA O Y, BUFFETT B A. Methane solubility in marine hydrate environments[J]. Marine Geology, 2004, 203(1/2): 177–184.
      [26]
      MESTDAGH T, POORT J, DE B M. The sensitivity of gas hydrate reservoirs to climate change: perspectives from a new combined model for permafrost-related and marine settings[J]. Earth-Science Reviews, 2017, 169: 104–131. http://hal.sorbonne-universite.fr/hal-01521071/document
      [27]
      WAITE W F, STERN L A, KIRBY S H, et al. Simultaneous determination of thermal conductivity, thermal diffusivity and specific heat in SI methane hydrate[J]. Geophysical Journal International, 2007, 169(2): 767–774. doi: 10.1111/j.1365-246X.2007.03382.x
      [28]
      HU H, ARGYROPOULOS S A. Mathematical modelling of solidification and melting: a review[J]. Modelling and Simulation in Materials Science and Engineering, 1996, 4(4): 371–396. doi: 10.1088/0965-0393/4/4/004
      [29]
      REAGAN M T, MORIDIS G J. Dynamic response of oceanic hydrate deposits to ocean temperature change[J]. Journal of Geophysical Research Oceans, 2008, 113(C12).
      [30]
      TAN L, LIU F, HUANG Y, et al. Production-induced instability of a gentle submarine slope: potential impact of gas hydrate exploitation with the huff-puff method[J]. Engineering Geology, 2021, 289: 106174.
      [31]
      蒋明镜, 陈意茹, 卢国文. 一种实用型深海能源土多场耦合离散元数值方法[J]. 岩土工程学报, 2021, 43(8): 1391–1398. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18686.shtml

      JIANG Ming-jing, CHEN Yi-ru, LU Guo-wen. A practical multi-field coupling distinct element method for methane hydrate bearing sediments[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1391–1398. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18686.shtml
      [32]
      LIU F, TAN L, CROSTA G, et al. Spatiotemporal destabilization modes of upper continental slopes undergoing hydrate dissociation[J]. Engineering Geology, 2020, 264: 105286.
      [33]
      邹远晶, 韦昌富, 陈合龙, 等. 基于扰动状态概念的含水合物土弹塑性模型[J]. 岩土力学, 2019, 40(7): 2653–2662. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907019.htm

      ZOU Yuan-jing, WEI Chang-fu, CHEN He-long, et al. Elastic-plastic model for gas-hydrate-bearing soils using disturbed state concept[J]. Rock and Soil Mechanics, 2019, 40(7): 2653–2662. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907019.htm
      [34]
      杨胜雄, 梁金强, 陆敬安, 等. 南海北部神狐海域天然气水合物成藏特征及主控因素新认识[J]. 地学前缘, 2017, 24(4): 1–14. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201704002.htm

      YANG Sheng-xiong, LIANG Jin-qiang, LU Jin-gan, et al. New understandings on the characteristics and controlling factors of gas hydrate reservoirs in the Shenhu area on the northern slope of the South China Sea[J]. Earth Science Frontiers, 2017, 24(4): 1–14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201704002.htm
      [35]
      年廷凯, 焦厚滨, 范宁, 等. 南海北部陆坡软黏土动力应变-孔压特性试验[J]. 岩土力学, 2018, 39(5): 1564–1572, 1580.

      NIAN Ting-kai, JIAO Hou-bin, FAN Ning, et al. Experiment on dynamic strain-pore pressure of soft clay in the northern slope of South China Sea[J]. Rock and Soil Mechanics, 2018, 39(5): 1564–1572, 1580. (in Chinese)
      [36]
      年廷凯, 范宁, 焦厚滨, 等. 南海北部陆坡软黏土全流动强度试验研究[J]. 岩土工程学报, 2018, 40(4): 602–611. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17326.shtml

      NIAN Ting-kai, FAN Ning, JIAO Hou-bin, et al. Full-flow strength tests on the soft clay in the northern slope of the South China Sea[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 602–611. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17326.shtml
      [37]
      蒋明镜, 肖俞, 刘芳. 深海能源土开采对海床稳定性的影响研究思路[J]. 岩土工程学报, 2010, 32(9): 1412–1417. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract13601.shtml

      JIANG Ming-jing, XIAO Yu, LIU Fang. Methodology for assessing seabed instability induced by exploitation of methane hydrate[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(9): 1412–1417. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract13601.shtml
      [38]
      年廷凯, 沈月强, 郑德凤, 等. 海底滑坡链式灾害研究进展[J]. 工程地质学报, 2021, 29(6): 1657–1675. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202106001.htm

      NIAN Ting-kai, SHEN Yue-qiang, ZHENG De-feng, et al. Research advances on the chain disasters of submarine landslides[J]. Journal of Engineering Geology, 2021, 29(6): 1657–1675. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202106001.htm
      [39]
      郑德凤, 雷得浴, 闫成林, 等. 基于Web of Science数据库的海底滑坡研究趋势文献计量分析[J]. 工程地质学报, 2021, 29(6): 1805–1814. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202106015.htm

      ZHENG De-feng, LEI De-yu, YAN Cheng-lin, et al. Global research trends in submarine landslides: a bibliometric analysis based on web of science publications[J]. Journal of Engineering Geology, 2021, 29(6): 1805–1814. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202106015.htm
      [40]
      吴时国, 董冬冬, 杨胜雄, 等. 南海北部陆坡细粒沉积物天然气水合物系统的形成模式初探[J]. 地球物理学报, 2009, 52(7): 1849–1857. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200907020.htm

      WU Shi-guo, DONG Dong-dong, YANG Sheng-xiong, et al. Genetic model of the hydrate system in the fine grain sediments in the northern continental slope of South China Sea[J]. Chinese Journal of Geophysics, 2009, 52(7): 1849–1857. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200907020.htm
      [41]
      QIN X W, LU J A, LU H, et al. Co-existence of gas hydrate, free gas, and water in gas hydrate reservoir system in Shenhu area[J]. China Geology, 2020, 3(2): 210–220.
      [42]
      石要红, 张旭辉, 鲁晓兵, 等. 南海水合物黏土沉积物力学特性试验模拟研究[J]. 力学学报, 2015, 47(3): 521–528. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201503016.htm

      SHI Yao-hong, ZHANG Xu-hui, LU Xiao-bing, et al. Experimental study on the static mechanical properties of hydrate-bearing silty-clay in the South China Sea[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(3): 521–528. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201503016.htm
    • Related Articles

      [1]ZHOU Feng-xi, ZHOU Zhi-xiong, SHAO Sheng-jun. Wetting deformation properties of unsaturated collapsible loess[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 36-40. DOI: 10.11779/CJGE2021S1007
      [2]ZHU Cai-hui, LI Ning. Moistening effects of high-fill embankment due to rainfall infiltration in loess gully region[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 845-854. DOI: 10.11779/CJGE202005006
      [3]LI Tao, JIANG Ming-jing, ZHANG Peng. DEM analyses of oedometer and wetting tests on unsaturated structured loess[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 39-44. DOI: 10.11779/CJGE2018S1007
      [4]LI Shan-shan, LI Da-yong, GAO Yu-feng. Determination of maximum and minimum void ratios of sands and their influence factors[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 554-561. DOI: 10.11779/CJGE201803021
      [5]WANG Nai, WANG Lan-min. Characteristics and influencing factors of seismic loess slopes in valley areas[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 434-438.
      [6]WU Xu-ping, DING Chun-lin. Damage properties and influence factors of remolded frozen clay[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 2038-2044.
      [7]REN Lian-wei, WANG Jun-lin. Factors for horizontal bearing capacity of large-diameter belled piles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 299-303.
      [8]ZHAO Jian-bin, Shi Yong-qiang, YANG Jun. Influencing factors for bearing capacity of statically pressed pipe piles based on grey theory[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 394-398.
      [9]CHENG Dongxing, LIU Daan, DING Enbao, ZHAO Hongmin, PAN Wei, GUO Huafeng. Analysis on influential factors and toppling conditions of toppling rock slope[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(11): 127-131.
      [10]REN Jianxi, JIANG Yu, GE Xiurun. Test and analysis on rock fatigue life due to affecting factors under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(11): 47-50.
    • Other Related Supplements

    • Cited by

      Periodical cited type(8)

      1. 杨威. 基于原位测试方法的土体变形参数研究. 安徽建筑. 2024(04): 141-143 .
      2. 黄献文,姚直书,蔡海兵,李凯奇,唐楚轩. 基于微观结构重塑的非饱和冻土导热系数预测. 岩土力学. 2023(01): 193-205 .
      3. 陈磊. 基于静力触探测试的深基坑工程土体设计参数应用研究. 广东建材. 2023(04): 72-75 .
      4. 张德,张泽超,张璐璐,张洁,曹子君. 场地有限数据条件下土体不排水抗剪强度的概率分布的贝叶斯估计研究. 岩土工程学报. 2023(06): 1259-1268 . 本站查看
      5. 曹阳健. 基于原位测试方法的土体变形参数研究. 砖瓦. 2023(06): 66-69 .
      6. 汪明元,张国,潘孙珏徐,陶袁钦. 基于集合卡尔曼滤波的海洋土孔隙率预测研究. 工业建筑. 2023(06): 37-42 .
      7. 黄献文,赵光明,黄顺杰,王泽洲,王雪松,唐楚轩. 基于堆积颗粒几何特征的多尺度渗透注浆扩散半径预测. 岩石力学与工程学报. 2023(08): 2028-2040 .
      8. 柯琪睿,李长冬,姚文敏,范一博,李炳辰. 干湿循环下侏罗系软弱夹层剪切特性与抗剪强度参数概率表征. 水利水电技术(中英文). 2023(11): 192-204 .

      Other cited types(6)

    Catalog

      Article views (324) PDF downloads (34) Cited by(14)
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return