• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
ZHANG Yu-wei, SONG Zhan-ping, XIE Yong-li. Prediction model for soil-water characteristic curve of loess under porosity change[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2017-2025. DOI: 10.11779/CJGE202211007
Citation: ZHANG Yu-wei, SONG Zhan-ping, XIE Yong-li. Prediction model for soil-water characteristic curve of loess under porosity change[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2017-2025. DOI: 10.11779/CJGE202211007

Prediction model for soil-water characteristic curve of loess under porosity change

More Information
  • Received Date: September 05, 2021
  • Available Online: December 08, 2022
  • The loess has obvious macropore structure. The internal pores change continuously in the process of water immersion and collapsibility, resulting in the dynamic change of soil-water characteristic curve in the process of water immersion. In order to simply predict the soil-water characteristic curve of loess under different pore conditions, taking the pore volume function as the breakthrough point, assuming the influence law of the change of soaking pore on the pore volume function, and introducing the translation factor ξ1i and the compression factor ξ2i, the relationship among the translation factor, the compression factor and the pore index e is established through the average pore radius, and the different pores are derived based on the initial pore state. Based on the Gardner model and introducing the pore index, the model for the soil-water characteristic curve of loess considering the change of soaking pore is established. When the influences of pore change are not considered, the model degenerates to the Gardner model. The model contains six parameters, which can be determined by experiments. The parameters of the model are calibrated by the initial state, and the soil-water characteristic curve of loess with pore change is predicted. The combination shows that the predicted results by the model are in good agreement with the test ones. The evolution law of the soil-water characteristics of loess under different conditions of water soaked pore changes can be accurately predicted by using this model, which may provide preference for establishing the constitutive model for loess.
  • [1]
    郑方, 邵生俊, 佘芳涛, 等. 重塑黄土在不同基质吸力下的真三轴剪切试验[J]. 岩土力学, 2020, 41(增刊1): 156–162. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2020S1018.htm

    ZHENG Fang, SHAO Sheng-jun, SHE Fang-tao, et al. True triaxial shear tests of remolded loess under different matrix suctions[J]. Rock and Soil Mechanics, 2020, 41(S1): 156–162. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2020S1018.htm
    [2]
    占鑫杰, 詹良通, 林伟岸, 等. 一种基于持水曲线的市政污泥水分分布测试方法研究[J]. 岩土工程学报, 2021, 43(11): 2112–2118. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18824.shtml

    ZHAN Xin-jie, ZHAN Liang-tong, LIN Wei-an, et al. Moisture distribution in sewage sludge based on soil-water characteristic curve[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2112–2118. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18824.shtml
    [3]
    李达, 汪时机, 李贤, 等. 不同覆土压力下砂质黏性紫色土的土–水特征曲线研究[J]. 岩土工程学报, 2021, 43(10): 1950–1956. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18803.shtml

    LI Da, WANG Shi-ji, LI Xian, et al. Soil-water characteristic curve of sandy clayey purple soil under different overburden pressures[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1950–1956. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18803.shtml
    [4]
    BROOKS R H, COREY A T. Hydraulic Properties of Porous Media[M]. Fort Collins: Colorado State University, 1964.
    [5]
    NUTH M, LALOUI L. Advances in modelling hysteretic water retention curve in deformable soils[J]. Computers and Geotechnics, 2008, 35(6): 835–844. doi: 10.1016/j.compgeo.2008.08.001
    [6]
    GARDNER W R. Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table[J]. Soil Science, 1958, 85(4): 228–232. doi: 10.1097/00010694-195804000-00006
    [7]
    FREDLUND D G, XING A Q. Equations for the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 1994, 31(4): 521–532. doi: 10.1139/t94-061
    [8]
    费锁柱, 谭晓慧, 董小乐, 等. 基于土体孔径分布的土水特征曲线预测[J]. 岩土工程学报, 2021, 43(9): 1691–1699. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18770.shtml

    FEI Suo-zhu, TAN Xiao-hui, DONG Xiao-le, et al. Prediction of soil-water characteristic curve based on pore size distribution of soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1691–1699. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18770.shtml
    [9]
    VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892–898. doi: 10.2136/sssaj1980.03615995004400050002x
    [10]
    LU N, LIKOS W J. Suction stress characteristic curve for unsaturated soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(2): 131–142. doi: 10.1061/(ASCE)1090-0241(2006)132:2(131)
    [11]
    SHENG D C. Review of fundamental principles in modelling unsaturated soil behaviour[J]. Computers and Geotechnics, 2011, 38(6): 757–776.
    [12]
    RUSSELL A R, BUZZI O. A fractal basis for soil-water characteristics curves with hydraulic hysteresis[J]. Géotechnique, 2012, 62(3): 269–274. doi: 10.1680/geot.10.P.119
    [13]
    孙德安, 张俊然, 吕海波. 全吸力范围南阳膨胀土的土–水特征曲线[J]. 岩土力学, 2013, 34(7): 1839–1846. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201307004.htm

    SUN De-an, ZHANG Jun-ran, LÜ Hai-bo. Soil-water characteristic curve of Nanyang expansive soil in full suction range[J]. Rock and Soil Mechanics, 2013, 34(7): 1839–1846. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201307004.htm
    [14]
    孙德安, 刘文捷, 吕海波. 桂林红黏土的土-水特征曲线[J]. 岩土力学, 2014, 35(12): 3345–3351. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201412001.htm

    SUN De-an, LIU Wen-jie, LÜ Hai-bo. Soil-water characteristic curve of Guilin lateritic clay[J]. Rock and Soil Mechanics, 2014, 35(12): 3345–3351. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201412001.htm
    [15]
    高游, 孙德安, 张俊然, 等. 考虑孔隙比和水力路径影响的非饱和土土水特性研究[J]. 岩土工程学报, 2019, 41(12): 2191–2196. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18065.shtml

    GAO You, SUN De-an, ZHANG Jun-ran, et al. Soil-water characteristics of unsaturated soils considering initial void ratio and hydraulic path[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2191–2196. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18065.shtml
    [16]
    SUN D A, SHENG D C, SLOAN S W. Elastoplastic modelling of hydraulic and stress-strain behaviour of unsaturated soils[J]. Mechanics of Materials, 2007, 39(3): 212–221.
    [17]
    胡冉, 陈益峰, 周创兵. 基于孔隙分布的变形土土水特征曲线模型[J]. 岩土工程学报, 2013, 35(8): 1451–1462. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract15253.shtml

    HU Ran, CHEN Yi-feng, ZHOU Chuang-bing. A water retention curve model for deformable soils based on pore size distribution[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1451–1462. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract15253.shtml
    [18]
    周葆春, 孔令伟. 考虑体积变化的非饱和膨胀土土水特征[J]. 水利学报, 2011, 42(10): 1152–1160. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201110002.htm

    ZHOU Bao-chun, KONG Ling-wei. Effect of volume changes on soil-water characteristics of unsaturated expansive soil[J]. Journal of Hydraulic Engineering, 2011, 42(10): 1152–1160. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201110002.htm
    [19]
    孙德安. 非饱和土的水力和力学特性及其弹塑性描述[J]. 岩土力学, 2009, 30(11): 3217–3231. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200911003.htm

    SUN De-an. Hydro-mechanical behaviours of unsaturated soils and their elastoplastic modelling[J]. Rock and Soil Mechanics, 2009, 30(11): 3217–3231. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200911003.htm
    [20]
    ZHOU A, SHENG D, CARTER J. Modelling the effect of initial density on soil-water characteristic curves[J]. Géotechnique, 2012, 62(8): 669–680.
    [21]
    SIMMS P H, YANFUL E K. Measurement and estimation of pore shrinkage and pore distribution in a clayey till during soil-water characteristic curve tests[J]. Canadian Geotechnical Journal, 2001, 38(4): 741–754.
    [22]
    张雪东, 赵成刚, 刘艳, 等. 变形对土水特征曲线影响规律模拟研究[J]. 土木工程学报, 2011, 44(7): 119–126. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201107018.htm

    ZHANG Xue-dong, ZHAO Cheng-gang, LIU Yan, et al. Modeling study of the relationship between deformation and water retention curve[J]. China Civil Engineering Journal, 2011, 44(7): 119–126. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201107018.htm
    [23]
    HUANG S Y, BARBOUR S L, FREDLUND D G. Development and verification of a coefficient of permeability function for a deformable unsaturated soil[J]. Canadian Geotechnical Journal, 1998, 35(3): 411–425.
    [24]
    GALLIPOLI D. A hysteretic soil-water retention model accounting for cyclic variations of suction and void ratio[J]. Géotechnique, 2012, 62(7): 605–616.
    [25]
    HU R, CHEN Y F, LIU H H, et al. A water retention curve and unsaturated hydraulic conductivity model for deformable soils: consideration of the change in pore-size distribution[J]. Géotechnique, 2013, 63(16): 1389–1405.
    [26]
    DELLA VECCHIA G, DIEUDONNÉ A C, JOMMI C, et al. Accounting for evolving pore size distribution in water retention models for compacted clays[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 39(7): 702–723.
    [27]
    MUALEM Y. A new model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water Resources Research, 1976, 12(3): 513–522.
    [28]
    TANAKA H, SHIWAKOTI D R, OMUKAI N, et al. Pore size distribution of clayey soils measured by mercury intrusion porosimetry and its relation to hydraulic conductivity[J]. Soils and Foundations, 2003, 43(6): 63–73.
    [29]
    MONROY R, ZDRAVKOVIC L, RIDLEY A. Evolution of microstructure in compacted London clay during wetting and loading[J]. Géotechnique, 2010, 60(2): 105–119.
    [30]
    LLORET A, ROMERO E, VILLAR M V. FEBEX II project final report on thermo-hydro-mechanical laboratory tests[R]. Madrid: Publication Technical ENRESA 10/2004, 2004.
    [31]
    张玉伟, 宋战平, 翁效林. Q3原状黄土与重塑黄土的土水特性研究[J]. 水资源与水工程学报, 2019, 30(3): 224–229. https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ201903035.htm

    ZHANG Yu-wei, SONG Zhan-ping, WENG Xiao-lin. Study on soil water characteristic curve of Q3 intact and remolded loess[J]. Journal of Water Resources and Water Engineering, 2019, 30(3): 224–229. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ201903035.htm
  • Cited by

    Periodical cited type(9)

    1. 罗鹏. 干湿循环与竖向应力作用下非饱和红砂岩土土水特性研究. 贵州科学. 2025(02): 81-85 .
    2. 常洲,晏长根,安宁,兰恒星,石玉玲,包含,许江波. 干湿循环作用下原状黄土渗透性及其对土-水特征曲线的影响. 长江科学院院报. 2024(01): 143-150+166 .
    3. 陈家乐,倪万魁,王海曼,荣誉. 原状黄土土-水特征曲线与湿陷性的相关性. 中国地质灾害与防治学报. 2024(02): 107-114 .
    4. 胡梦玲,张小龙,许文昊,王治文,陈豪. 干密度和增减湿对压实黄土水力特性的影响. 长江科学院院报. 2024(08): 128-134 .
    5. 沈春廷,孔令明. 具有参数独立性的双峰土水特征曲线预测模型. 北京建筑大学学报. 2024(04): 104-111 .
    6. 郑健龙,刘绍平,胡惠仁. 公路路基湿度计算理论研究进展. 中外公路. 2023(01): 1-10 .
    7. 孟翔鹏,王浩宇. 降雨对边坡稳定性的影响及加固措施. 交通世界. 2023(08): 1-4 .
    8. 宋战平,吴友川,周冠男,潘红伟,肖珂辉. 黄土损伤模型及其在隧道施工稳定性分析中的应用. 地下空间与工程学报. 2023(02): 640-649 .
    9. 张亚国,梁伟,郭松峰,王幼博,李萍,李同录. 黄土孔隙结构演化对其土-水特性影响分析. 工程地质学报. 2022(06): 1998-2005 .

    Other cited types(9)

Catalog

    Article views (266) PDF downloads (43) Cited by(18)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return