• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Jin-zhang, HUANG Hong-wei, ZHANG Dong-ming, PHOON Kok-kwang, TANG Chong. Simplified methods for deformation analysis of tunnel structures considering spatial variability of soil properties[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 134-143. DOI: 10.11779/CJGE202201013
Citation: ZHANG Jin-zhang, HUANG Hong-wei, ZHANG Dong-ming, PHOON Kok-kwang, TANG Chong. Simplified methods for deformation analysis of tunnel structures considering spatial variability of soil properties[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 134-143. DOI: 10.11779/CJGE202201013

Simplified methods for deformation analysis of tunnel structures considering spatial variability of soil properties

More Information
  • Received Date: June 29, 2021
  • Available Online: September 22, 2022
  • The spatial variability of soil properties is widely accepted, and the response of a geo-structure can be significantly affected by the spatial variability of the surrounding soil mass. The random field theory is a popularly used method to simulate the spatial variability of soil properties. The stochastic analysis of horizontal convergence of tunnel is carried out using the random field difference method considering the spatial variability of Young's modulus. The random field difference method is combined with the Monte Carlo method and finite difference simulation based on random field theory. A large number of Monte Carlo simulations are adopted in the proposed random field difference method. Meanwhile, three simple and easy-to-use methods for the spatial variability of soil are proposed: reduction factor method, amplification factor method and reliability partial factor calibration method. Based on the statistical analysis of the calculated results, the suggested values of three simplified analysis methods under different combinations of the horizontal scale of fluctuation, the vertical scale of fluctuation and the coefficient of variation are given. This study may provide references for the application of spatial variability research to practical geotechnical engineering.
  • [1]
    HUANG H W, SHAO H, ZHANG D M, et al. Deformational responses of operated shield tunnel to extreme surcharge: a case study[J]. Structure and Infrastructure Engineering, 2017, 13(3): 345–360. doi: 10.1080/15732479.2016.1170156
    [2]
    HUANG H W, XIAO L, ZHANG D M, et al. Influence of spatial variability of soil Young's modulus on tunnel convergence in soft soils[J]. Engineering Geology, 2017, 228: 357–370. doi: 10.1016/j.enggeo.2017.09.011
    [3]
    PHOON K K, KULHAWY F H. Characterization of geotechnical variability[J]. Canadian Geotechnical Journal, 1999, 36(4): 612–624. doi: 10.1139/t99-038
    [4]
    ZHANG J Z, HUANG H W, ZHANG D M, et al. Quantitative evaluation of geological uncertainty and its influence on tunnel structural performance using improved coupled Markov chain[J]. Acta Geotechnica, 2021, 16: 3709–3724. doi: 10.1007/s11440-021-01287-6
    [5]
    陶袁钦, 孙宏磊, 蔡袁强. 考虑约束的贝叶斯概率反演方法[J]. 岩土工程学报, 2021, 43(1): 1878–1886. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202110016.htm

    TAO Yuan-qin, SUN Hong-lei, CAI Yuan-qiang. Bayesian back analysis considering constraints[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 43(1): 1878–1886. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202110016.htm
    [6]
    ZHANG W G, HAN L, GU X, et al. Tunneling and deep excavations in spatially variable soil and rock masses: a short review[J/OL]. Underground Space, 2020: [2020-12-07]. http://doi. org/10.1016/j. undsp. 2020.03. 003.
    [7]
    VANMARCKE E H. Probabilistic modeling of soil profiles[J]. Journal of the Geotechnical Engineering Division, 1977, 103(11): 1227–1246. doi: 10.1061/AJGEB6.0000517
    [8]
    LI D Q, JIANG S H, CAO Z J, et al. A multiple response-surface method for slope reliability analysis considering spatial variability of soil properties[J]. Engineering Geology, 2015, 187: 60–72. doi: 10.1016/j.enggeo.2014.12.003
    [9]
    蒋水华, 刘贤, 黄发明, 等. 考虑多参数空间变异性的降雨入渗边坡失稳机理及可靠度分析[J]. 岩土工程学报, 2020, 42(5): 900–907. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202005017.htm

    JIANG Shui-hua, LIU Xian, HUANG Fa-ming, et al. Failure mechanism and reliability analysis of soil slopes under rainfall infiltration considering spatial variability of multiple soil parameters[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 900–907. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202005017.htm
    [10]
    CHING J, HU Y G, PHOON K K. Effective Young's modulus of a spatially variable soil mass under a footing[J]. Structural Safety, 2018, 73: 99–113. doi: 10.1016/j.strusafe.2018.03.004
    [11]
    LI J H, ZHOU Y, ZHANG L L, et al. Random finite element method for spudcan foundations in spatially variable soils[J]. Engineering Geology, 2016, 205: 146–155. doi: 10.1016/j.enggeo.2015.12.019
    [12]
    LUO Z, LI Y X, ZHOU S H, et al. Effects of vertical spatial variability on supported excavations in sands considering multiple geotechnical and structural failure modes[J]. Computers and Geotechnics, 2018, 95: 16–29. doi: 10.1016/j.compgeo.2017.11.017
    [13]
    CHEN F Y, WANG L, ZHANG W G. Reliability assessment on stability of tunnelling perpendicularly beneath an existing tunnel considering spatial variabilities of rock mass properties[J]. Tunnelling and Underground Space Technology, 2019, 88: 276–289. doi: 10.1016/j.tust.2019.03.013
    [14]
    ZHANG J Z, HUANG H W, ZHANG D M, et al. Effect of ground surface surcharge on deformational performance of tunnel in spatially variable soil[J]. Computers and Geotechnics, 2021, 136: 104229. doi: 10.1016/j.compgeo.2021.104229
    [15]
    程红战, 陈健, 胡之锋, 等. 考虑参数空间变异性的隧道下穿建筑物安全性评价[J]. 岩土工程学报, 2017, 39(增刊2): 75–78. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2017S2020.htm

    CHENG Hong-zhan, CHEN Jian, HU Zhi-feng, et al. Evaluation of safety of buildings above tunnels accounting for spatial variability of soil properties[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(S2): 75–78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2017S2020.htm
    [16]
    王长虹, 朱合华, 徐子川, 等. 考虑岩土参数空间变异性的盾构隧道地表沉降分析[J]. 岩土工程学报, 2018, 40(2): 270–277. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802008.htm

    WANG Chang-hong, ZHU He-hua, XU Zi-chuan, et al. Ground surface settlement of shield tunnels considering spatial variability of multiple geotechnical parameters[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 270–277. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802008.htm
    [17]
    谭晓慧, 董小乐, 费锁柱, 等. 基于KL展开的可靠度分析方法及其应用[J]. 岩土工程学报, 2020, 42(5): 808–816. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202005005.htm

    TAN Xiao-hui, DONG Xiao-le, FEI Suo-zhu, et al. Reliability analysis method based on KL expansion and its application[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 808–816. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202005005.htm
    [18]
    CHING J, HU Y G. Effect of element size in random finite element analysis for effective Young's modulus[J]. Mathematical Problems in Engineering, 2016, 2016: 1–10.
    [19]
    ZHANG D M, LIU Z S, WANG R L, et al. Influence of grouting on rehabilitation of an over-deformed operating shield tunnel lining in soft clay[J]. Acta Geotechnica, 2019, 14(4): 1227–1247. doi: 10.1007/s11440-018-0696-8
    [20]
    GONG W P, LUO Z, JUANG C H, et al. Optimization of site exploration program for improved prediction of tunneling-induced ground settlement in clays[J]. Computers and Geotechnics, 2014, 56: 69–79. doi: 10.1016/j.compgeo.2013.10.008
    [21]
    JIN D L, SHEN Z C, YUAN D J. Effect of spatial variability on disc cutters failure during TBM tunneling in hard rock[J]. Rock Mechanics and Rock Engineering, 2020, 53(10): 4609–4621. doi: 10.1007/s00603-020-02192-2
    [22]
    HUANG Z K, PITILAKIS K, TSINIDIS G, et al. Seismic vulnerability of circular tunnels in soft soil deposits: The case of Shanghai metropolitan system[J]. Tunnelling and Underground Space Technology, 2020, 98: 103341. doi: 10.1016/j.tust.2020.103341
    [23]
    邵华. 上海地铁盾构隧道变形机理及无线传感方法研究[D]. 上海: 同济大学, 2018.

    SHAO Hua. Analysis of Deformation Mechanism and Wireless Sensing Method of Shield Tunnel for Shanghai Metro[D]. Shanghai: Tongji University, 2018. (in Chinese)
  • Cited by

    Periodical cited type(8)

    1. 谢伟华,胡皓,卢文龙,劳文欣,尹铁男. 一种水下桩基三维点云的分割和滤波方法. 海洋测绘. 2025(01): 53-56+61 .
    2. 刘浩杰,吴勇,张向阳,辉龙贵. 基桩桩底岩溶声呐探测典型波形特征分析研究. 中国水运(下半月). 2024(07): 138-139+142 .
    3. 庞军,吴红刚,牌立芳,宁峙名,徐汶瀚. 基桩检测中声测管不平行问题及桩身完整性评估方法综述. 铁道标准设计. 2024(07): 78-91 .
    4. 翟晓强. 基于超声波透射法的大型桥梁基桩内部缺陷检测方法. 重庆建筑. 2024(09): 56-58 .
    5. 刘浩杰,吴勇,张向阳,辉龙贵. 基桩桩底岩溶声呐探测典型波形特征分析研究. 中国水运. 2024(14): 138-139+142 .
    6. 张季然,陈德山,李廷文,吕洁印,汪洋. 面向水下未知空间探测的改进RRT路径搜索算法. 武汉理工大学学报(交通科学与工程版). 2023(02): 256-262 .
    7. 王鹏,徐时贤,李国红,刘娟红,刘嘉,魏绍斌,陆峰,戴圣龙. 跨海大桥混凝土服役挑战及检测方法综述. 材料导报. 2023(S1): 212-219 .
    8. 吴志华,罗创涟,刘爱荣,傅继阳,陈炳聪. 桥梁水下结构病害智能检测方法. 结构工程师. 2023(06): 9-17 .

    Other cited types(8)

Catalog

    Article views PDF downloads Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return