CUI Jian-guo, TIAN Ye, LIU Jun-wei, HOU Xu-yan, CUI Jiang-lei, YANG Fei, WANG Jing, GUAN Xiang-yi. Influences of critical fragment migration characteristics of lunar soil on drilling resistance[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1715-1723. DOI: 10.11779/CJGE202109017
    Citation: CUI Jian-guo, TIAN Ye, LIU Jun-wei, HOU Xu-yan, CUI Jiang-lei, YANG Fei, WANG Jing, GUAN Xiang-yi. Influences of critical fragment migration characteristics of lunar soil on drilling resistance[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1715-1723. DOI: 10.11779/CJGE202109017

    Influences of critical fragment migration characteristics of lunar soil on drilling resistance

    More Information
    • Received Date: October 11, 2020
    • Available Online: December 02, 2022
    • The critical fragment refers to the lunar soil particles with average diameter greater than or equal to the diameter of coring bit hole, which is widely distributed in lunar subsurface soil. On one hand, due to the drilling effect in the drilling process, some of the critical fragments are placed from the bottom of the hole and embedded into the borehole wall to produce the hole wall insertion phenomenon, thus increasing consumption of the cutting load power. On the other hand, the others cannot be collected by the coring hole following the rotation of the drilling tool, thus increasing the risk of drilling failure. Firstly, the critical fragment cutting model for lunar soil is established, the particle size of the critical fragment and its interaction position with cutting edge are considered, the sensitivity of cutting resistance is analyzed, and it is obtained that the change of position has the most obvious influences on cutting resistance. Then, the concept of normal overlap ratio is put forward to study the influences of position change on the migration characteristics and cutting resistance of the critical fragment. The rotary motion of cutting edge is equivalent to the linear one, and the influences of normal overlap ratio on the cutting resistance are verified by the discrete element method, so as to obtain the relationship between the normal overlap ratio and the phenomenon of being placed from the bottom of the hole and embedded into the borehole wall to produce the hole wall insertion, as well as the characteristics of the corresponding time-domain change curve of cutting resistance. Finally, through the simulation tests on the migration characteristics of the critical fragment, it is found that the normal overlap ratio and cutting resistance have a linear relationship in the same direction. When the critical fragment produces the process of being placed from the bottom of the hole and embedded into the wall, the time-domain curve features of the corresponding cutting resistances are continuous peak points and only one peak point respectively. The above results may provide the theoretical basis for the parameter identification of drilling conditions in lunar sampling mission.
    • [1]
      蒋明镜. 现代土力学研究的新视野——宏微观土力学[J]. 岩土工程学报, 2019, 41(2): 195-254. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902002.htm

      JIANG Ming-jing. New paradigm for modern soil mechanics: Geomechanics from micro to macro[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 195-254. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902002.htm
      [2]
      尹振宇, 许强, 胡伟. 考虑颗粒破碎效应的粒状材料本构研究:进展及发展[J]. 岩土工程学报, 2012, 34(12): 2170-2180. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201212006.htm

      YIN Zhen-yu, XU Qiang, HU Wei. Research on the constitutive properties of granular materials considering the effect of particle breakage: Progress and development[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2170-2180. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201212006.htm
      [3]
      唐钧跃, 全齐全, 姜生元, 等. 模拟月壤钻进力载建模及试验验证[J]. 机械工程学报, 2017, 53(7): 85-93. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201707013.htm

      TANG Jun-yue, QUAN Qi-quan, JIANG Sheng-yuan, et al. Mechanics modeling and experimental validation for lunar regolith simulant drilling[J]. Journal of Mechanical Engineering, 2017, 53(7): 85-93. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201707013.htm
      [4]
      郭汝坤, 冯春, 李战军, 等. 牙轮钻工作参数与岩体强度对应关系的理论分析与实验研究[J]. 岩土工程学报, 2016, 38(7): 1221-1229. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201607008.htm

      GUO Ru-kun, FENG Chun, LI Zhanjun, et al. Theoretical and experimental studies on relationship between working parameters of cone drill and rock strengths[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1221-1229. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201607008.htm
      [5]
      张宇, 陈善雄, 余飞, 等. 低应力水平下CAS-1模拟月壤力学特性试验研究[J]. 岩石力学与工程学报, 2015, 34(1): 174-181. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201501019.htm

      ZHANG Yu, CHEN Shan-xiong, YU Fei, et al. Esperimental study of mechanocal properties of lunar soil simulant CAS-1 under low stress[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(1): 174-181. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201501019.htm
      [6]
      李宁, 李骞, 宋玲. 基于回转切削的岩石力学参数获取新思路[J]. 岩石力学与工程学报, 2015, 34(2): 323-329. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201502013.htm

      LI Ning, LI Qian, SONG Ling. Acquiring mechanical parameters of rock basd on rotational cutting[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(2): 323-329. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201502013.htm
      [7]
      刘泉声, 刘建平, 时凯, 等. 评价岩石脆性指标对滚刀破岩效率的影响[J]. 岩石力学与工程学报, 2016, 35(3): 498-510. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201603007.htm

      LIU Quan-sheng, LIU Jian-ping, SHI Kai, et al. Evaluation of rock brittleness indexes on rock fragmentation efficiency by disc cutter[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(3): 498-510. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201603007.htm
      [8]
      DOSHVARPASSAND S, RICHARD T, MOSTOFI M. Effect of groove geometry and cutter in rock cutting[J]. Journal of Petroleum Science and Engineering, 2017, 151(10): 1-1.
      [9]
      LI P, JIANG S Y, TANG D W, et al. Design and testing of coring bits on drilling lunar rock simulant[J]. Advances in Space Research, 2017, 59(4): 1057-1076.
      [10]
      CHE D, ZHANG W Z, EHMANN K. Chip Formation and force responses in linear rock cutting: an experimental study[J]. Journal of Manufacturing Science and Engineering, 2017, 139(8): 1-12.
      [11]
      DAGRAIN F, QUICKELBERGHE F V, TSHIBANGU J P. A new procedure to analyse the wear of cutting elements[C]//Eurock 2006, 2006, Belgium.
      [12]
      刘天喜, 魏承, 马亮, 等. 大颗粒岩块对月壤钻取过程的影响分析[J]. 岩土工程学报, 2014, 36(11): 2118-2126. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201411024.htm

      LIU Tian-xi, WEI Cheng, MA Liang, et al. Effect of large granular rocks on drilling process of lunar soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 2118-2126. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201411024.htm
      [13]
      庞勇, 冯亚杰, 孙启臣, 等. 月壤大颗粒对钻进力载影响的仿真及试验研究[J]. 北京大学学报(自然科学版), 2019, 55(3): 397-404. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201903001.htm

      PANG Yong, FENG Ya-jie, SUN Qi-chen, et al. Simulation and experimental study on the effect of large granular rocks in lunar soil on drilling load[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2019, 55(3): 397-404. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201903001.htm
      [14]
      QIAN Y Q, XIAO L, YIN S, et al. The regolith properties of the Chang'e-5 landing region and the ground drilling experiments using lunar regolith simulants[J]. Elsevier Inc, 2020, 337(5): 113508-113521.
      [15]
      TIAN Y, TANG B, YANG F, et al. Lunar critical fragment layer simulant identification using an impact method[J]. Acta Astronautica, 2020, 173(6): 294-302.
      [16]
      林呈祥, 凌道盛, 钟世英, 等. TJ-1模拟月壤颗粒几何特性[J]. 东北大学学报(自然科学版), 2016, 37(3): 451-456. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201603031.htm

      LIN Cheng-xiang, LING Dao-sheng, ZHONG Shi-ying, et al. Geometric characteristics of TJ-1 lunar soil simulant particles[J]. Journal of Northeastern University (Natural Science), 2016, 37(3): 451-456. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201603031.htm
      [17]
      郑永春, 欧阳自远, 王世杰, 等. 月壤的物理和机械性质[J]. 矿物岩石, 2004, 24(4): 14-19. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200404003.htm

      ZHENG Yong-chun, OUYANG Zi-yuan, WANG Shi-jie, et al. Physical and mechanical properties of lunar regolith[J]. Journal of Mineralogy and Petrology, 2004, 24(4): 14-19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200404003.htm
      [18]
      胡伟, 孟建伟, 刘顺凯, 等. 单螺旋锚桩水平承载机理试验与理论研究[J]. 岩土工程学报, 2020, 42(1): 158-167. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001025.htm

      HU Wei, MENG Jian-wei, LIU Shun-kai, et al. Experimental and theoretical researches on horizontal bearing mechansim of single screw anchor pile[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 158-167. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001025.htm
      [19]
      WHEELER P, GODWIN R. Soil dynamics of single and multiple tines at speeds up to 20km/h[J]. Journal of Agricultural Engineering Research, 1996, 63(3): 243-249.
      [20]
      LI P, JIANG S Y, TANG D W, et al. A PFC3D-based numerical simulation of cutting load for lunar rock simulant and experimental validation[J]. Advances in Space Research, 2017, 59(10): 2583-2599.
      [21]
      戴北冰, 杨峻, 刘锋涛, 等. 散粒土自然堆积的宏细观特征与形成机制[J]. 岩土工程学报, 2019, 41(增刊2): 57-60. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S2016.htm

      DAI Bei-bing, YANG Jun, LIU Feng-tao, et al. Macro- and micro-properties and formation mechanisms of granular piles[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 57-60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S2016.htm
      [22]
      CARRIER W. Geotechnical Properties of Lunar Soil[R]. Lake Land: Lunar Geotechnical Institute, 2005.
      [23]
      田野, 陈萌萌, 杨飞, 等. 用于砂土层连续采样的柔性软袋式钻取采样技术研究[J]. 农业机械学报, 2018, 49(12): 246-252. https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201812030.htm

      TIAN Ye, CHEN Meng-meng, YANG Fei, et al. Technology of coring drill with flexible tube for sand layers continuous sampling[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(12): 246-252. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201812030.htm
    • Related Articles

      [1]ZHOU Feng-xi, ZHOU Zhi-xiong, SHAO Sheng-jun. Wetting deformation properties of unsaturated collapsible loess[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 36-40. DOI: 10.11779/CJGE2021S1007
      [2]ZHU Cai-hui, LI Ning. Moistening effects of high-fill embankment due to rainfall infiltration in loess gully region[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 845-854. DOI: 10.11779/CJGE202005006
      [3]LI Tao, JIANG Ming-jing, ZHANG Peng. DEM analyses of oedometer and wetting tests on unsaturated structured loess[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 39-44. DOI: 10.11779/CJGE2018S1007
      [4]LI Shan-shan, LI Da-yong, GAO Yu-feng. Determination of maximum and minimum void ratios of sands and their influence factors[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 554-561. DOI: 10.11779/CJGE201803021
      [5]WANG Nai, WANG Lan-min. Characteristics and influencing factors of seismic loess slopes in valley areas[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 434-438.
      [6]WU Xu-ping, DING Chun-lin. Damage properties and influence factors of remolded frozen clay[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 2038-2044.
      [7]REN Lian-wei, WANG Jun-lin. Factors for horizontal bearing capacity of large-diameter belled piles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 299-303.
      [8]ZHAO Jian-bin, Shi Yong-qiang, YANG Jun. Influencing factors for bearing capacity of statically pressed pipe piles based on grey theory[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 394-398.
      [9]CHENG Dongxing, LIU Daan, DING Enbao, ZHAO Hongmin, PAN Wei, GUO Huafeng. Analysis on influential factors and toppling conditions of toppling rock slope[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(11): 127-131.
      [10]REN Jianxi, JIANG Yu, GE Xiurun. Test and analysis on rock fatigue life due to affecting factors under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(11): 47-50.
    • Cited by

      Periodical cited type(8)

      1. 杨威. 基于原位测试方法的土体变形参数研究. 安徽建筑. 2024(04): 141-143 .
      2. 黄献文,姚直书,蔡海兵,李凯奇,唐楚轩. 基于微观结构重塑的非饱和冻土导热系数预测. 岩土力学. 2023(01): 193-205 .
      3. 陈磊. 基于静力触探测试的深基坑工程土体设计参数应用研究. 广东建材. 2023(04): 72-75 .
      4. 张德,张泽超,张璐璐,张洁,曹子君. 场地有限数据条件下土体不排水抗剪强度的概率分布的贝叶斯估计研究. 岩土工程学报. 2023(06): 1259-1268 . 本站查看
      5. 曹阳健. 基于原位测试方法的土体变形参数研究. 砖瓦. 2023(06): 66-69 .
      6. 汪明元,张国,潘孙珏徐,陶袁钦. 基于集合卡尔曼滤波的海洋土孔隙率预测研究. 工业建筑. 2023(06): 37-42 .
      7. 黄献文,赵光明,黄顺杰,王泽洲,王雪松,唐楚轩. 基于堆积颗粒几何特征的多尺度渗透注浆扩散半径预测. 岩石力学与工程学报. 2023(08): 2028-2040 .
      8. 柯琪睿,李长冬,姚文敏,范一博,李炳辰. 干湿循环下侏罗系软弱夹层剪切特性与抗剪强度参数概率表征. 水利水电技术(中英文). 2023(11): 192-204 .

      Other cited types(6)

    Catalog

      Article views (357) PDF downloads (114) Cited by(14)
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return