Citation: | DENG Gang, ZHANG Yin-qi, ZHANG Yan-yi, ZHAN Zheng-gang, YANG Jia-xiu, LU Ji, CAO Xue-xing. Impermeability characteristics of junctional zone between compacted broadly graded clayey soil and hard surface[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1631-1639. DOI: 10.11779/CJGE202109007 |
[1] |
邓刚, 丁勇, 张延亿, 等. 土质心墙土石坝沿革及体型和材料发展历程的回顾[J]. 中国水利水电科学研究院学报, 2021, 19(2): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSX202104006.htm
DENG Gang, DING Yong, ZHANG Yan-yi, et al. Evolution of earth core embankment dams along with the development of configuration and material[J]. Journal of China Institute of Water Resources and Hydropower Research, 2021, 19(2): 1-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSX202104006.htm
|
[2] |
KJAERNSLI B, TORBLAA I. Compaction of moraine in three feet layers[C]//Proceeding of the 7th International Congress on Large Dams, 1961, Rome.
|
[3] |
ASAO I. The Miboro Dam[C]//Proceeding of the 8th International Congress on Large Dams, 1964, Edinbergh.
|
[4] |
COOKE J B. Design Methods of Construction and Performance of High Rockfill Dams (above or about 80 m)[C]//Proceeding of the 8th International Congress on Large Dams, 1964, Edinburgh.
|
[5] |
ALBERRO J, MORENO E. Interaction phenomena in the Chicoasén dam: Construction and first filling[C]//Proceeding of the 14th International Congress on Large Dams, 1982, Rio De Janeiro.
|
[6] |
邓刚, 韩巍巍, 温彦锋, 等. Hyttejuvet坝突然渗漏事故的回顾和心墙堆石坝水力劈裂的反思[C]//土石坝技术2012年论文集, 2012, 北京.
DENG Gang, HAN Wei-wei, WEN Yan-feng, et al. A review of the sudden leakage of hyttejuvet dam and a reflection on the hydraulic fracturing of the earth core rockfill dams[C]//Proceeding of the Symposium on Technology of Earth-Rockfill Dam Rockfill Dams, 2012, Beijing. (in Chinese)
|
[7] |
邓刚, 皇甫泽华, 武颖利, 等. 土质心墙土石坝变形协调控制发展与展望[J]. 水力发电学报, 2020, 39(5): 1-16.
DENG Gang, HUANGFU Ze-hua, WU Yin-li, et al. Development and prospect of deformation compatibility control of earth core embankment dams[J]. Journal of Hydroelectric Engineering, 2020, 39(5): 1-16. (in Chinese)
|
[8] |
邓刚, 陈辉, 张茵琪, 等. 基于坝壳湿化过程数值模拟的心墙坝初蓄水力劈裂机理研究[J]. 中国水利水电科学研究院学报, 2021, 19(1): 90-98. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSX202101012.htm
DENG Gang, CHEN Hui, ZHANG Yin-qi, et al. Study on mechanism of hydraulic fracture of earth core embankment dam during first filling based on the numerical simulation of wetting deformation development with time of coarse aggregate[J]. Journal of China Institute of Water Resources and Hydropower Research, 2021, 19(1): 90-98. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSX202101012.htm
|
[9] |
DEWHURST D N, CLENNELL M B, BROWN K M, et al. Fabric and hydraulic conductivity of sheared clays[J]. Géotechnique, 1996, 46(4): 761-768. doi: 10.1680/geot.1996.46.4.761
|
[10] |
DEWHURST D N, BROWN K M, CLENNELL M B, et al. A comparison of the fabric and permeability anistrophy of consolidated and sheared silty clay[J]. Engineering Geology, 1996, 42(4): 253-267. doi: 10.1016/0013-7952(95)00089-5
|
[11] |
ZHANG S Q, TERRY E T. The effect of fault slip on permeability and permeability anisotropy in quartz gouge[J]. Tectonophysics, 1998, 295: 41-52. doi: 10.1016/S0040-1951(98)00114-0
|
[12] |
KIMURA S, KANEKO H, ITO T, et al. Investigation of fault permeability in sands with different mineral compositions (evaluation of gas hydrate reservoir)[J]. Energies, 2015, 8: 7202-7223. doi: 10.3390/en8077202
|
[13] |
IMURA S, KANEKO H, NODA S, et al. Shear-induced permeability reduction and shear-zone development of sand under high vertical stress[J]. Engineering Geology, 2018, 238: 86-98. doi: 10.1016/j.enggeo.2018.02.018
|
[14] |
WANG G, WEI X, ZOU T. A hollow cylinder radial-seepage apparatus for evaluating permeability of sheared compacted clay[J]. Geotechnical Testing Journal, 2019, 42(5): 1133-1149.
|
[15] |
魏星, 邹婷, 王刚. 压-剪耦合条件下黏土渗透特性的试验研究.[J]. 岩石力学与工程学报, 2017, 36(增刊1): 3561-3568. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S1050.htm
WEI Xing, ZOU Ting, WANG Gang. Experimental study on permeability of clay during coupled compression and shear[J]. Chinese Journal of Rock Mechanics and Geotechnical Engineering, 2017, 36(S1): 3561-3568. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S1050.htm
|
[16] |
王刚, 游克勤, 魏星, 等. 压实黏土剪切带渗透特性试验研究[J]. 岩土工程学报, 2019, 41(8): 1530-1537.
WANG Gang, YOU Ke-qin, WEI Xing, et al. Experimental study on permeability of shear bands in compacted clay[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1530-1537. (in Chinese)
|
[17] |
雷红军, 卞锋, 于玉贞, 等. 黏土大剪切变形中的渗透特性试验研究[J]. 岩土力学, 2010, 31(4): 1130-1133. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201004025.htm
LEI Hong-jun, BIAN Feng, YU Yu-zhen, et al. Experimental study of permeability of clayey soil during process of large shear deformation[J]. Rock and Soil Mechanics, 2010, 31(4): 1130-1133. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201004025.htm
|
[18] |
LEI H J, WU Y K, YU Y Z, et al. Influence of shear on permeability of clayey soil[J]. International Journal of Geomechanics, 2016, 16(5): 04016010
|
[19] |
LIU Q H, WU Y K, LI Q M, et al. Modified model for hydraulic conductivity of clayey soil under shear[J]. International Journal of Geomechanics, 2019, 19(11): 06019015.
|
[20] |
王刚, 韦林邑, 魏星, 等. 压实黏土三轴压缩变形过程中的渗透性变化规律[J]. 岩土力学, 2020, 41(1): 32-38.
WANG Gang, WEI Lin-yi, WEI Xing, et al. Permeability evolution of compacted clay during triaxial compression[J]. Rock and Soil Mechanics, 2020, 41(1): 32-38. (in Chinese)
|
[21] |
雷红军, 刘中阁, 于玉贞, 等. 黏土-结构接触面大剪切变形后渗流特性试验研究[J]. 岩土力学, 2011, 32(4): 1040-1044. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201104013.htm
LEI Hong-jun, LIU Zhong-ge, YU Yu-zhen, et al. Experimental study of seepage characteristics of clayey soil-structure interface under large shear deformation[J]. Rock and Soil Mechanics, 2011, 32(4): 1040-1044. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201104013.htm
|
[22] |
LUO Y L, JIN X, LI X, et al. A new apparatus for evaluation of contact erosion at the soil-structure interface[J]. Geotechnical Testing Journal, 2013, 36(2): 256-263.
|
[23] |
邓刚, 湛正刚, 张幸幸, 等. 一种旋转剪切式接触面抗渗特性试验装置:中国,201610305992.8[P]. 2019-01-25.
DENG Gang, ZHAN Zheng-gang, ZHANG Xing-xing, et al. The invention discloses a rotary shear type test device for impermeability of contact surface: China, 201610305992.8[P]. 2019-01-25. (in Chinese)
|
[24] |
邓刚, 湛正刚, 张茵琪, 等. 一种模拟接触面渗流耦合特性的试验装置及试验方法: CN111912760A[P]. 2020-11-10.
DENG Gang, ZHAN Zheng-gang, ZHANG Yin-qi, et al. The invention relates to a test device and a test method for simulating the seepage coupling characteristics of contact surfaces: CN111912760A[P]. 2020-11-10. (in Chinese)
|
[25] |
COLLINS K, MCGOWN A. The form and function of microfabric features in a variety of natural soils[J]. Géotechnique, 1974, 24(2): 223-254.
|
[26] |
MITCHELL J K, SOGA K. Fundamental of soil behavior[M]. 3rd ed. New Jersey: John Wiley and Sons, 2005.
|
[27] |
OLSEN H W. Hydraulic flow through saturated clay[C]//Proceedings of the Ninth National Conference on Clays and Clay Minerals, 1962, West Lafayette.
|
[28] |
DELAGE P, LEFEBVRE G. Study of the structure of a sensitive Champlain clay and of its evolution during consolidation[J]. Canadian Geotechnical Journal, 1984, 21(1): 21-35.
|
[29] |
MORGENSTERN N R, TCHALENKO J S. Microscopic structures in Kaolin subjected to direct shear[J]. Géotechnique, 1967, 17: 309-328.
|
[1] | XIN Gong-feng, ZHOU Hai-zuo, ZHANG Wen-liang, ZHENG Gang, YANG Xin-yu, YU Xiao-xuan, XU Shi-qian. Influences of column cap on progressive failure and stability characteristics of column-supported embankments[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 63-67. DOI: 10.11779/CJGE2022S1012 |
[2] | ZHANG Jiang-wei, LI Xiao-jun, WANG Xiao-ming, CHI Ming-jie, WANG Yu-shi. Method for judging seismic stability state of soil slopes[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 2096-2102. DOI: 10.11779/CJGE201811016 |
[3] | ZHAO Ming-hua, XIA Run-yan, YIN Ping-bao, YANG Chao-wei, XU Zhuo-jun. Load transfer mechanism of socketed piles considering shear dilation effects of soft rock[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1005-1011. DOI: 10.11779/CJGE201406003 |
[4] | WANG Zhe, ZHUANG Yingchun. Analytical analysis of vertical load-transfer of large-diameter cast-in-situ concrete tubular piles[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(10): 1488-1492. |
[5] | LOU Xiaoming, SUN Xiaofeng. Analysis on load transfer for large area composite foundation with rigid piles and cushions[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(11): 2027-2030. |
[6] | ZHANG Fan, GONG Weiming, DAI Guoliang. Experimental research on the load transfer mechanism of super-long large diameter bored pile with the self-balanced load test method[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(4): 464-469. |
[7] | WANG Zhe, ZHOU Jian, GONG Xiaonan. Analysis of axial load-transfer of large-diameter tubular pile using cast-in-situ concrete[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(10): 1185-1189. |
[8] | HAN Xuan, ZHANG Nairui. In-situ tests on load transfer mechanism of group piled foundation in Beijing[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(1): 74-80. |
[9] | Zhang Huiming, Zeng Qiaoling. Steady state strength of sand:concepts and experiment[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(2): 95-100. |
[10] | Liu Songyu, Ji Peng, Wei Jie. Load transfer behavior of large diameter cast in place pile embedded in soft rock[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(4): 61. |