WANG Gang, YANG Jun-jie, WANG Zhao-nan. Evolution of critical state of calcareous sand during particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1511-1517. DOI: 10.11779/CJGE202108016
    Citation: WANG Gang, YANG Jun-jie, WANG Zhao-nan. Evolution of critical state of calcareous sand during particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1511-1517. DOI: 10.11779/CJGE202108016

    Evolution of critical state of calcareous sand during particle breakage

    More Information
    • Received Date: June 26, 2020
    • Available Online: December 02, 2022
    • Based on the particle breakage characteristics and development laws of calcareous sand from physical triaxial test results, a discrete element numerical model is established for conducting numerical triaxial tests. First, the specimens with different initial gradings are generated by pre-crushing a uniformly graded calcareous sand under different pressures, and the numerical tests without breakage during the following triaxial shear process are carried out to determine the relationship between the critical state and the fixed grading. The results show that the fixed grading has a fixed critical state line, and the critical state lines of different gradings are basically parallel, but their position decreases gradually with the broader grading (i.e., the increasing breakage) in the e-p compression plane. Afterwards, the numerical tests of crushable particles during loading process are conducted on the specimens with the same uniform grading so as to reveal the evolution mechanism of the critical state during real triaxial tests on crushable soils. The results show that in the three-dimensional e-p-Br space, the points of the critical state from the crushable tests fall on the surface of the breakage critical state determined by the fixed critical state lines from the non-crushable tests, indicating that the critical state depends only on the final grading regardless of the intermediate process to achieve the final grading. In real physical tests, the particle breakage extent of the points at the measured critical state line is different, and thus the critical state line exhibits complicated nonlinear form. Under triaxial compression conditions, the particle breakage increases with the increasing mean effective stress, leading to the rotation of the measured critical state line.
    • [1]
      ROSCOE K H, SCHOFIELD A N, WROTH C P. On the yielding of soils[J]. Géotechnique, 1958, 8(1): 22-53. doi: 10.1680/geot.1958.8.1.22
      [2]
      YAO Y P, LIU L, LUO T, et al. Unified hardening (UH) model for clays and sands[J]. Computers and Geotechnics, 2019, 110: 326-343. doi: 10.1016/j.compgeo.2019.02.024
      [3]
      姚仰平, 刘林, 罗汀. 砂土的UH模型[J]. 岩土工程学报, 2016, 38(12): 2147-2153. doi: 10.11779/CJGE201612002

      YAO Yang-ping, LIU Lin, LUO Ting. UH model for sands[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2147-2153. (in Chinese) doi: 10.11779/CJGE201612002
      [4]
      VERDUGO R, ISHIHARA K. The steady state of sandy soils[J]. Soils and Foundations, 1996, 36(2): 81-91. doi: 10.3208/sandf.36.2_81
      [5]
      CAI Zheng-yin, LI Xiang-song, Deformation characteristics and critical state of sand[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(5): 697-701. doi: 10.3321/j.issn:1000-4548.2004.05.025
      [6]
      MUIR WOOD D, MAEDA K, NUKUDANI E. Modelling mechanical consequences of erosion[J]. Géotechnique, 2010, 60(6): 447-457. doi: 10.1680/geot.2010.60.6.447
      [7]
      王刚, 叶沁果, 查京京. 珊瑚礁砂砾料力学行为与颗粒破碎的试验研究[J]. 岩土工程学报, 2018, 40(5): 802-810. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805006.htm

      WANG Gang, YE Qin-guo, ZHA Jing-jing. Experimental study on mechanical behavior and particle crushing of coral sand-gravel fill[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 802-810. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805006.htm
      [8]
      陆勇, 周国庆, 顾欢达. 高低压下不同力学特性的砂土统一模型[J]. 岩土力学, 2018, 39(2): 614-620. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201802027.htm

      LU Yong, ZHOU Guo-qing, GU Huan-da. Unified model of sand with different mechanical characteristics under high and low pressures[J]. Rock and Soil Mechanics, 2018, 39(2): 614-620. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201802027.htm
      [9]
      BIAREZ J, HICHER P Y. Elementary Mechanics of Soil Behaviour: Saturated Remoulded Soils[M]. Rotterdam: AA Balkema, 1994.
      [10]
      BANDINI V, COOP M R. The influence of particle breakage on the location of the critical state line of sands[J]. Soils and Foundations, 2011, 51(4): 591-600. doi: 10.3208/sandf.51.591
      [11]
      XIAO Y, LIU H, DING X, et al. Influence of particle breakage on critical state line of rockfill material[J]. International Journal of Geomechanics, 2016, 16(1): 4015031. doi: 10.1061/(ASCE)GM.1943-5622.0000538
      [12]
      WOOD D M, MAEDA K. Changing grading of soil: effect on critical states[J]. Acta Geotechnica, 2007, 3(1): 3-14.
      [13]
      YAN W M, DONG J. Effect of particle grading on the response of an idealized granular assemblage[J]. International Journal of Geomechanics, 2011, 11(4): 276-285. doi: 10.1061/(ASCE)GM.1943-5622.0000085
      [14]
      HANLEY K J, O’SULLIVAN C, HUANG X. Particle-scale mechanics of sand crushing in compression and shearing using DEM[J]. Soils and Foundations, 2015, 55(5): 1100-1112. doi: 10.1016/j.sandf.2015.09.011
      [15]
      CIANTIA M O, ARROYO M, O'SULLIVAN C, et al. Grading evolution and critical state in a discrete numerical model of Fontainebleau sand[J]. Géotechnique, 2019, 69(1): 1-15. doi: 10.1680/jgeot.17.P.023
      [16]
      金磊, 曾亚武, 李欢, 等. 基于不规则颗粒离散元的土石混合体大三轴数值模拟[J]. 岩土工程学报, 2015, 37(5): 829-838. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201505010.htm

      JIN Lei, ZENG Ya-wu, LI Huan, et al. Numerical simulation of large-scale triaxial tests on soil-rock mixture based on DEM of irregularly shaped particles[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 829-838. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201505010.htm
      [17]
      韩洪兴, 陈伟, 邱子锋, 等. 考虑破碎的堆石料二维颗粒流数值模拟[J]. 岩土工程学报, 2016, 38(增刊2): 234-239. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2016S2038.htm

      HAN Hong-xing, CHEN Wei, QIU Zi-feng, et al. Numerical simulation of two-dimensional particle flow in broken rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(S2): 234-239. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2016S2038.htm
      [18]
      周健, 张艳伟, 周韵鸿, 等. 考虑粒间法向接触力作用的粗粒土颗粒破碎试验研究[J]. 岩土工程学报, 2018, 40(7): 1163-1170. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201807002.htm

      ZHOU Jian, ZHANG Yan-wei, ZHOU Yun-hong, et al. Experimental study on particle breakage of coarse-grained soil considering normal contact force[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1163-1170. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201807002.htm
      [19]
      周伦伦, 楚锡华, 徐远杰. 基于离散元法的真三轴应力状态下砂土破碎行为研究[J]. 岩土工程学报, 2017, 39(5): 839-847. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201705011.htm

      ZHOU Lun-lun, CHU Xi-hua, XU Yuan-jie. Breakage behavior of sand under true triaxial stress based on discrete element method[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 839-847. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201705011.htm
      [20]
      张家铭, 张凌, 蒋国盛, 等. 剪切作用下钙质砂颗粒破碎试验研究[J]. 岩土力学, 2008, 29(10): 2789-2793. doi: 10.3969/j.issn.1000-7598.2008.10.037

      ZHANG Jia-ming, ZHANG Ling, JIANG Guo-sheng, et al. Research on particle crushing of calcareous sands under triaxial shear[J]. Rock and Soil Mechanics, 2008, 29(10): 2789-2793. (in Chinese) doi: 10.3969/j.issn.1000-7598.2008.10.037
      [21]
      GUYON É, TROADEC J P. From a bag of marbles to a pile of sand[M]. Paris: Odile Jacob Publishing, 1994. (in France)
      [22]
      吴京平, 褚瑶, 楼志刚. 颗粒破碎对钙质砂变形及强度特性的影响[J]. 岩土工程学报, 1997, 19(5): 51-57. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC705.007.htm

      WU Jing-ping, CHU Yao, LOU Zhi-gang. Influence of particle breakage on deformation and strength properties of calcareous sands[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(5): 51-57. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC705.007.htm
      [23]
      WANG G, WANG Z N, YE Q G, et al. Particle breakage and deformation behavior of carbonate sand under drained and undrained triaxial compression[J]. International Journal of Geomechanics, 2020, 20(3): 4020012. doi: 10.1061/(ASCE)GM.1943-5622.0001601
      [24]
      王刚, 查京京, 魏星. 循环三轴应力路径下钙质砂颗粒破碎演化规律[J]. 岩土工程学报, 2019, 41(4): 755-760. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904025.htm

      WANG Gang, ZHA Jing-jing, WEI Xing. Evolution of particle crushing of carbonate sands under cyclic triaxial stress path[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 755-760. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904025.htm
      [25]
      ŠMILAUER V, CATALANO E, CHAREYRE B, et al. Yade Documentation[EB/OL]. https://yade-dem.org/doc/, 2013-10-17.
      [26]
      HARDIN B O, ASCE F. Crushing of soil particles[J]. Journal of Geotechnical Engineering ASCE, 1985, 111(10): 1177-1192. doi: 10.1061/(ASCE)0733-9410(1985)111:10(1177)
      [27]
      LI X S, WANG Y. Linear Representation of Steady-State Line for Sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(12): 1215-1217. doi: 10.1061/(ASCE)1090-0241(1998)124:12(1215)
      [28]
      WANG Z N, WANG G, YE Q G. A constitutive model for crushable sands involving compression and shear induced particle breakage[J]. Computers and Geotechnics, 2020, 126: 103757. doi: 10.1016/j.compgeo.2020.103757
    • Cited by

      Periodical cited type(27)

      1. 夏晶晶,贺姣姣. 基于直剪试验土石混合体路基的稳定性问题研究. 山西建筑. 2025(01): 125-128+172 .
      2. 郜力君,郝捷. 含石率及坡度对土石混合路堑边坡稳定性的影响分析. 交通世界. 2025(Z2): 154-156 .
      3. 邹弈,朱碧堂,吴颖彪,周宇航. 断层破碎带黏性夹泥岩体与基岩接触界面大型直剪试验研究. 华东交通大学学报. 2025(01): 45-51 .
      4. 李利萍,余泓浩,李秋雨,潘一山. 砂岩不同含水特性对超低摩擦效应影响试验研究. 力学学报. 2025(03): 687-700 .
      5. 刘飞禹,王迪,付冬平. 法向循环荷载下土石混合料-格栅界面剪切特性研究. 防灾减灾工程学报. 2025(02): 458-467 .
      6. 黄小芸,邓华锋,李建林,李冠野,叶晨晖,朱文羲. 干湿循环作用下土-岩接触面剪切力学特性劣化规律试验研究. 工程地质学报. 2025(02): 416-425 .
      7. 王家全,吴新彪,董程锋,张涛艺. 基于SmartRock传感技术的含砂道砟直剪试验研究. 岩土力学. 2025(04): 1060-1070 .
      8. 程虎,李重情,穆朝民. 冻结温度对不同粒径冻土石混合体劈裂特性的影响. 煤矿安全. 2024(01): 160-166 .
      9. 代兴先,宋杨,张志彬,齐子怡,刘棋瑞. 土石混合料力学特性和颗粒破碎研究. 河北水利电力学院学报. 2024(01): 1-8 .
      10. 李慎刚,石云方,刘晋宁,蒋琛. 碎石土路基填料压实及渗透特性. 工程科学学报. 2024(05): 918-926 .
      11. SHI Yunfang,LI Shengang,JIANG Chen,LIU Jinning. Gravel hardness effect on compaction characteristics of gravelly soil. Journal of Mountain Science. 2024(04): 1432-1443 .
      12. 谢周州,赵炼恒,李亮,黄栋梁,张子健,周靖. 基于振动台试验的不同含石率土-石混合体边坡地震动响应差异性研究. 岩土力学. 2024(08): 2324-2337 .
      13. 王楠楠,高霞,张吉哲,张保勇,吴强. 基于平行黏结模型的含瓦斯水合物煤体宏细观力学性质研究. 煤炭学报. 2024(S1): 314-326 .
      14. 魏东旭,彭雄志,张佳,范帅,冯瑨. 石灰岩碎石土大型直剪试验研究. 勘察科学技术. 2024(04): 1-5+43 .
      15. 李刚,尹小涛. 基于数字化施工的山区公路土石混合弃渣工程尺度参数测定方法研究. 水利与建筑工程学报. 2024(06): 76-82 .
      16. 陈小翔. 碎石土路基填料压实及渗透特性研究. 江西建材. 2024(10): 52-54 .
      17. 杨忠平,李进,刘浩宇,张益铭,刘新荣. 土石混合体-基岩界面剪切力学特性块石尺寸效应. 岩土力学. 2023(04): 965-974 .
      18. 刘建平,周花玉,何天奎,余镜南,张坤,潘玉丛,刘泉声. 含根量对根–土石复合体的抗剪强度影响试验初探——以垂丝海棠为例. 岩石力学与工程学报. 2023(S1): 3618-3628 .
      19. 刘飞禹,孔剑捷,姚嘉敏. 含石量和压实度对格栅-土石混合体界面剪切特性的影响. 岩土工程学报. 2023(05): 903-911 . 本站查看
      20. 韩志洋,曹志翔,黄开放. 基于离散元模拟的土石混合体剪切与变形特性研究. 中国农村水利水电. 2023(05): 238-244 .
      21. 唐丽云,黄涛,汪卫兵,金龙,孙强,李国玉,罗滔. 冻融循环下土石混合体-混凝土界面剪切特性及孔隙结构演化特征试验研究. 中南大学学报(自然科学版). 2023(05): 1954-1969 .
      22. 张俊云,张乐,高福洲,唐永吉,何卓岭,王鹰. 干湿循环下红层土石混合料强度及变形特性的试验研究. 西南交通大学学报. 2023(06): 1394-1404 .
      23. 程晓颖,乔婷,秦建敏,季顺迎. 复杂形态碎石颗粒的三维离散元模拟及试验验证. 计算机辅助工程. 2023(04): 40-47 .
      24. YANG Zhong-ping,LI Shi-qi,TIAN Xin,HU Yuan-xin,LI Wan-kun. Cumulative damage effect on debris slopes under frequent microseisms. Journal of Mountain Science. 2022(03): 781-797 .
      25. 崔熙灿,张凌凯,王建祥. 高堆石坝砂砾石料的细观参数反演及三轴试验模拟. 农业工程学报. 2022(04): 113-122 .
      26. 宋颖能. 朱家涧水库大坝土石方及渗控工程实施探讨. 内蒙古煤炭经济. 2022(08): 160-162 .
      27. 覃国强. 不同含石率及坡度条件下土石混合体路堑高边坡失稳机制分析. 福建交通科技. 2022(06): 21-25 .

      Other cited types(13)

    Catalog

      Article views (318) PDF downloads (221) Cited by(40)
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return