SHI Bei-xiao, LIU Sai-chao, WU Xin-lei, CHANG Wei-kun. Dilatancy behaviors of rockfill materials considering particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1360-1366. DOI: 10.11779/CJGE202107023
    Citation: SHI Bei-xiao, LIU Sai-chao, WU Xin-lei, CHANG Wei-kun. Dilatancy behaviors of rockfill materials considering particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1360-1366. DOI: 10.11779/CJGE202107023

    Dilatancy behaviors of rockfill materials considering particle breakage

    More Information
    • Received Date: August 02, 2020
    • Available Online: December 02, 2022
    • In order to study the relationship between particle breakage and dilatancy characteristics of rockfill materials under different porosity and stress conditions, the large-scale triaxial tests are carried out on the rockfill materials of a high rockfill dam. The results show that the of rockfill materials with different porosities exhibit different degrees of dilatancy under low confining pressure. As the confining pressure increases, the dilatancy phenomenon of the rockfill materials gradually disappears and turns into shrinkage. Therefore, the concept of breaking dilatancy ratio is put forward and used to describe the relationship between particle breakage and dilatancy characteristics. It is found that as the crushing rate of rockfill particles increases, the breaking dilatancy rate decreases in the form of a power function, and the dilatancy phenomenon gradually disappears. As the initial porosity of the rockfill materials increases, the failure dilatancy decreases, but the larger the confining pressure, the less the initial porosity has a smaller effect on the dilatancy characteristics. Based on the above test results, the relationship among the initial porosity of the rockfill materials, their dilatancy and particle breakage is established to predict the dilatancy of the rockfill materials under different confining pressures.
    • [1]
      石北啸, 蔡正银, 陈生水. 温度变化对堆石料变形影响的试验研究[J]. 岩土工程学报, 2016, 38(增刊2): 299-305. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2016S2049.htm

      SHI Bei-xiao, CAI Zheng-yin, CHEN Sheng-shui. Experiments on influence of temperature on deformation of rock fills[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(S2): 299-305. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2016S2049.htm
      [2]
      MARACHI N D, CHAN C K, SEED H B. Evaluation of properties of rockfill materials[J]. Journal of Soil Mechanics and Foundation Division, American Society of Civil Engineering, 1972, 98(1): 95-114.
      [3]
      WAN R G, GUO R G. A pressure and density dependent dilatancy model for granular materials[J]. Journal of Engineering, 1999, 39(6): 1-12.
      [4]
      YANG J, LI X S. State-dependent strength of sands from the perspective of unified modeling[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2004, 130(2): 186-198. doi: 10.1061/(ASCE)1090-0241(2004)130:2(186)
      [5]
      徐卫卫, 石北啸, 陈生水, 等. 孔隙率对堆石料强度与变形的影响规律[J]. 岩土工程学报, 2018, 40(增刊2): 47-52. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S2012.htm

      XU Wei-wei, SHI Bei-xiao, CHEN Sheng-shui, et al. Effects of porosity on strength and deformation of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 47-52. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S2012.htm
      [6]
      王峰. 考虑颗粒破碎的堆石料级配演化和变形特性研究[D]. 大连: 大连理工大学, 2018.

      WANG Feng. Study on Grading Evolution and Deformation of Rockfill Materials Considering Particle Breakage[D]. Dalian: Dalian University of Technology, 2018. (in Chinese)
      [7]
      凌华, 傅华, 韩华强. 粗粒土强度和变形的级配影响试验研究[J]. 岩土工程学报, 2017, 39(增刊1): 12-16. doi: 10.11779/CJGE2017S1003

      LING Hua, FU Hua, HAN Hua-qiang. Experimental study on effects of gradation on strength and deformation of coarse-grained soil[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(S1): 12-16. (in Chinese) doi: 10.11779/CJGE2017S1003
      [8]
      王子寒, 周健, 赵振平, 等.粗粒土强度特性及颗粒破碎试验研究[J]. 工业建筑, 2013, 43(8): 90-93, 14. https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ201308019.htm

      WANG Zi-han, ZHOU Jian, ZHAO Zhen-ping, et al. Experimental study on strength and crushing behavior of coarse-grained soil[J]. Industrial Construction, 2013, 43(8): 90-93, 14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ201308019.htm
      [9]
      郭万里, 朱俊高, 彭文明. 粗粒土的剪胀方程及广义塑性本构模型研究[J]. 岩土工程学报, 2018, 40(6): 1103-1110. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201806019.htm

      GUO Wan-li, ZHU Jun-gao, PENG Wen-ming. Dilatancy equation and generalized plastic constitutive model for coarse-grained soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1103-1110. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201806019.htm
      [10]
      秦红玉, 刘汉龙, 高玉峰, 等. 粗粒料强度和变形的大型三轴试验研究[J]. 岩土力学, 2004, 25(10): 1575-1580. doi: 10.3969/j.issn.1000-7598.2004.10.013

      QIN Hong-yu, LIU Han-long, GAO Yu-feng, et al. Research on strength and deformation behavior of coarse aggregates based on large-scale triaxial tests[J]. Rock and Soil Mechanics, 2004, 25(10): 1575-1580. (in Chinese) doi: 10.3969/j.issn.1000-7598.2004.10.013
      [11]
      褚福永, 朱俊高, 殷建华. 基于大三轴试验的粗粒土剪胀性研究[J]. 岩土力学, 2013, 34(8): 2249-2254. doi: 10.16285/j.rsm.2013.08.011

      ZHU Fu-yong, ZHU Jun-gao, YIN Jian-hua, et al. Study of dilatancy behaviors of coarse-grained soils in large-scale triaxial test[J]. Rock and Soil Mechanics, 2013, 34(8): 2249-2254. (in Chinese) doi: 10.16285/j.rsm.2013.08.011
      [12]
      陈晓斌. 红砂岩粗粒土剪胀效应大型三轴试验研究[J]. 岩石力学与工程学报, 2010, 29(增刊1): 3145-3149. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S1081.htm

      CHEN Xiao-bin. Study of dilatancy effect of Redstone coarse grained soil by large scale triaxial tests[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S1): 3145-3149. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S1081.htm
      [13]
      姜景山, 刘汉龙, 程展林, 等. 密度和围压对粗粒土力学性质的影响[J]. 长江科学院院报, 2009, 26(8): 46-50. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB200908014.htm

      JIANG Jing-shan, LIU Han-long, CHENG Zhan-lin, et al. Influences of density and confining pressure on mechanical properties for coarse grained soils[J]. Journal of Yangtze River Scientific Research Institute, 2009, 26(8): 46-50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB200908014.htm
      [14]
      陈守义. 各向异性线弹性体的剪胀与压斜[J]. 岩土力学, 1990, 11(1): 41-50. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX199001005.htm

      CHEN Shou-yi. Shearing dilatancy and isostatic deformity of anisotropic linear elastic material[J]. Rock & Soil Mechanics, 1990, 11(1): 41-50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX199001005.htm
      [15]
      土工试验方法标准:SL237—2019[S]. 2019.

      Standard for Soil Test Method: SL237—2019[S]. 2019. (in Chinese)
      [16]
      日本土质工学会. 粗粒土的现场压实[M]. 郭熙灵, 文丹,译. 北京: 中国水利水电出版社, 1999.

      Soil Engineering Society of Japan. Field Compaction of Coarse Materials[M]. GUO Xi-ling, WEN Dan, trans. Beijing: China WaterPower Press, 1999. (in Chinese)
      [17]
      MANZARI M T, DAFALIAS Y F. A critical state two-surface plasticity model for sands[J]. Géotechnique, 1997, 47(2): 255-272.
      [18]
      MARSAL R J. Large scale testing of rockfill materials[J]. Journal of the Soil Mechanics and Foundations Division, 1967, 93(2): 27-43.
      [19]
      刘萌成, 高玉峰, 刘汉龙. 堆石料剪胀特性大型三轴试验研究[J]. 岩土工程学报, 2008, 30(2): 205-211. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200802009.htm

      LIU Meng-cheng, GAO Yu-feng, LIU Han-long. Study on shear dilatancy behaviors of rockfills in large-scale triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(2): 205-211. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200802009.htm
    • Related Articles

      [1]YU Haitao, WANG Zhikun, ZHANG Zhongjie, SONG Yi. Shaking table tests on a near-valley subway station[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1800-1808. DOI: 10.11779/CJGE20230379
      [2]ZHONG Zilan, GUO Qinglong, GUO Jiaxi, ZHANG Bu, ZHAO Mi. Seismic response of subway station structure with concrete-filled-steel-tube middle columns[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 159-164. DOI: 10.11779/CJGE2023S20022
      [3]JIANG Jiawei, XU Chengshun, DU Xiuli, CHEN Guoxing, XU Zigang. Optimal index of earthquake intensity measures for seismic design of underground frame structure of shallow-buried subway station[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 318-326. DOI: 10.11779/CJGE20211498
      [4]MA Chao, WANG Zuo-hu, LU De-chun, DU Xiu-li. Seismic damage evaluation of CFRP-strengthened columns in subway stations[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2249-2256. DOI: 10.11779/CJGE202012011
      [5]ZHANG Si-yuan, TONG Li-yuan, ZHU Wen-jun, YOU Di. Different mechanical modes of diaphragm wall joints for foundation pit of subway station in Changzhou[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 240-243. DOI: 10.11779/CJGE2019S2060
      [6]ZHANG Xu, ZHANG Cheng-ping, HAN Kai-hang, WANG Jian-chen. Case study of control technology of structural settlements due to tunnelling beneath a subway station[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 759-766. DOI: 10.11779/CJGE201704023
      [7]WU Yi-qian, ZHU Yan-peng. Monitoring and numerical simulation of deformation law of deep foundation pit of subway station in Lanzhou collapsible loess[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 404-411. DOI: 10.11779/CJGE2014S2071
      [8]HE Wei, PAN Xing-yu, ZHANG Jun, FU Hong-yuan. Monitoring and environmental impact analysis of deep excavation of subway stations in river islands[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 478-483.
      [9]GAO Meng, GAO Guangyun, FENG Shijin, YU Zhisong. Control of deformation of operating subway station induced by adjacent deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(6): 818-823.
      [10]YANG Linde, JI Qianqian, ZHENG Yonglai, YANG Chao. Study on design of test box in shaking table test for subway station structure in soft soil[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 75-78.
    • Cited by

      Periodical cited type(4)

      1. 唐小平,邓良平,汪建海,梁榆峰,江杰,叶耿昌. 排水管道土压力数值分析及非开挖修复内衬管壁厚优化. 给水排水. 2024(02): 139-145 .
      2. 张常光,吴凯,孟祥忠,王晓轮. 稳态渗流下非饱和土涵洞竖向土压力的迭代解与简化. 哈尔滨工业大学学报. 2024(03): 68-77 .
      3. 于金弘,伍鹤皋,石长征,孙海清,汪碧飞,李娇娜. 考虑管道自重荷载的埋地钢管结构计算方法. 长江科学院院报. 2024(05): 155-161 .
      4. 朱珍锋,韩高孝. 沟埋式管道垂直土压力模拟试验研究. 水利与建筑工程学报. 2024(03): 99-106 .

      Other cited types(1)

    Catalog

      Article views (350) PDF downloads (188) Cited by(5)
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return