• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
TANG Zhao-guang, WANG Yong-zhi, DUAN Xue-feng, SUN Rui, WANG Ti-qiang. Development and performance evaluation of separable high-frequency response miniature pore water pressure transducer[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1210-1219. DOI: 10.11779/CJGE202107005
Citation: TANG Zhao-guang, WANG Yong-zhi, DUAN Xue-feng, SUN Rui, WANG Ti-qiang. Development and performance evaluation of separable high-frequency response miniature pore water pressure transducer[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1210-1219. DOI: 10.11779/CJGE202107005

Development and performance evaluation of separable high-frequency response miniature pore water pressure transducer

More Information
  • Received Date: September 16, 2020
  • Available Online: December 02, 2022
  • The pore water pressure is one of the key mechanical indexes in geotechnical model tests and in-situ engineering monitoring. Aiming at the characteristics of high frequency and instantaneous load of dynamic centrifugal model tests and the measuring requirements of dynamic pore water pressure, a novel separable high-frequency response miniature transducer DSP-II is developed. Moreover, the internationally recognized standard pore water pressure transducer PDCR-81 is selected to perform a series of static and dynamic calibration tests and centrifugal model tests to verify the accuracy, frequency response and stability performance of the DSP-II. The main conclusions are drawn: (1) The DSP-II has established key technology and design method in improving the frequency response, accuracy, life cycle, etc. (2) The dynamic calibration test results show that the response time of the DSP-II and the PDCR-81 is 4.93 and 4.97 ms, and the amplitude error is 0.483% and 0.575%, which indicates that the two transducers have basically the same dynamic performance and can meet the requirements of dynamic centrifugal tests with frequencies equal or less than 200 Hz. (3) From the static stepwise centrifugal loading and repeated tests after 39 days, the results of the two transducers with different buried depths are highly consistent with the theoretical values, the average amplitude error is 0.347% and 0.392%, and the repeatability index is 0.157% and 0.169%, which indicates that they have excellent long-term stability and consistency. (4) The results of the two transducers with different dynamic loads are nearly consistent in centrifugal model tests. The maximum time lag of peak value and the minimum correlation coefficient are 1.76 ms and 0.9908, which proves that the DSP-II reach the measurement performance of the PDCR-81. The research work and conclusions are essential for advancing pore water pressure measurement technology, and may provide important guidance and design method.
  • [1]
    KNODEL P C, KUTTER B L, SATHIALINGAM N, et al. Effects of arching on response time of miniature pore pressure transducer in clay[J]. Geotechnical Testing Journal, 1990, 13(3): 164-178. doi: 10.1520/GTJ10155J
    [2]
    KÖNIG D, JESSBERGER H L, BOLTON M D, et al. Pore Pressure Measurement During Centrifuge Model Tests: Experience of Five Laboratories[M]. Rotterdam: Balkema, 1994: 101-108.
    [3]
    CHANEY R C, DEMARS K R, MURALEETHARAN K K, et al. The use of miniature pore pressure transducers in measuring matric suction in unsaturated soils[J]. Geotechnical Testing Journal, 1999, 22(3): 226-234. doi: 10.1520/GTJ11113J
    [4]
    孙汝建. 压阻式孔隙水压力计性能试验研究[J]. 岩土工程学报, 2002, 24(6): 796-798. doi: 10.3321/j.issn:1000-4548.2002.06.028

    SUN Ru-jian. Experimental study of piezoresistive silicon pore pressure transducers[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(6): 796-798. (in Chinese) doi: 10.3321/j.issn:1000-4548.2002.06.028
    [5]
    王永志, 袁晓铭, 王海. 动力离心试验常规点位式量测技术改进方法[J]. 岩土力学, 2015, 36(增刊2): 722-728. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S2108.htm

    WANG Yong-zhi, YUAN Xiao-ming, WANG Hai. Improvement method of node-oriented measurement technique for dynamic centrifuge modeling[J]. Rock and Soil Mechanics, 2015, 36(S2): 722-728. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S2108.htm
    [6]
    汤兆光, 王永志, 孙锐, 等. 土工离心试验微型孔压传感器标定方法与影响因素[J]. 岩土工程学报, 2020, 42(7): 1238-1246. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202007011.htm

    TANG Zhao-guang, WANG Yong-zhi, SUN Rui, et al. Calibration method and effect factors of miniature pore water pressure transducer for geotechnical centrifuge modelling[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1238-1246. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202007011.htm
    [7]
    HOLZER T L, HANKS T C, YOUD T L. Dynamics of liquefaction during the 1987 superstition hills, California, earthquake[J]. Science, 1989, 244: 56-59. doi: 10.1126/science.244.4900.56
    [8]
    周镜.岩土工程中的几个问题[J]. 岩土工程学报, 1999, 21(1): 2-8. doi: 10.3321/j.issn:1000-4548.1999.01.002

    ZHOU Jing. Some cases in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(1): 2-8. (in Chinese) doi: 10.3321/j.issn:1000-4548.1999.01.002
    [9]
    曾辉, 余尚江. 岩土应力传感器设计和使用原则[J]. 岩土工程学报, 1994, 16(1): 93-98. doi: 10.3321/j.issn:1000-4548.1994.01.012

    ZENG Hui, YU Shang-jiang. Design and use policy of stress sensors in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(1): 93-98. (in Chinese) doi: 10.3321/j.issn:1000-4548.1994.01.012
    [10]
    TALESNICK M. Measuring soil pressure within a soil mass[J]. Canadian Geotechnical Journal, 2013, 50(7): 716-722. doi: 10.1139/cgj-2012-0347
    [11]
    芮瑞, 吴端正, 胡港, 等. 模型试验中膜式土压力盒标定及其应用[J]. 岩土工程学报, 2016, 38(5): 837-845. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201605009.htm

    RUI Rui, WU Duan-zheng, HU Gang, et al. Calibration tests on diaphragm-type pressure cells[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 837-845. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201605009.htm
    [12]
    王永志. 大型动力离心机设计理论与关键技术研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2013.

    WANG Yong-zhi. Study on Design Theory and Key Technology of Large Dynamic Centrifuge[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2013. (in Chinese)
    [13]
    STRINGER M, ALLMOND J, PROTO C, et al. Evaluating the response of new pore pressure transducers for use in dynamic centrifuge tests[C]//Proceedings of the 8th International Conference on Physical Modelling in Geotechnics, 2014, Perth, Australia.
    [14]
    王永志, 汤兆光, 孙锐, 等. 一种微型孔隙水压计: CN209127331U[P]. 2019-07-26.

    WANG Yong-zhi, TANG Zhao-guang, SUN Rui, et al. Miniature Pore Water Pressure Gauge: CN209127331U[P]. 2019-07-26. (in Chinese)
    [15]
    土工离心模型试验技术规程:DL/T 5102—2013[S]. 2014.

    Specification for Geotechnical Centrifuge Model Test Techniques: DL/T 5102—2013[S]. 2014. (in Chinese)
    [16]
    压力传感器性能试验方法:GB/T 15478—2015[S]. 2015.

    The Methods of the Performances for Pressure Transducer/ Sensor: GB/T 15478—2015[S]. 2015. (in Chinese)
    [17]
    CHANEY R C, DEMAES K R, DEWOOLKAR M M, et al. A substitute pore fluid for seismic centrifuge modeling[J]. Geotechnique Testing Journal, 1999, 22(3): 196-210. doi: 10.1520/GTJ11111J
    [18]
    CHANEY R C, DEMARS K R, STEWART D P, et al. Experience with the use of methylcellulose as a viscous pore fluid in centrifuge models[J]. Geotechnical Testing Journal, 1998, 21(4): 365-369. doi: 10.1520/GTJ11376J
  • Cited by

    Periodical cited type(15)

    1. 葛苗苗,朱才辉,盛岱超,PINEDA Jubert,李宁. 非饱和压实黄土渗气特性及细观渗气机制研究. 岩石力学与工程学报. 2025(01): 221-235 .
    2. 胡静,金林廉,吕志豪,张家康,边学成. 基于考虑变形效应的土-水特征曲线求解非饱和地基动力响应. 岩土工程学报. 2025(02): 397-406 . 本站查看
    3. 周葆春,江星澐,马全国,单丽霞,王江伟,李颖,易先达,孔令伟. 低应力和湿化路径下膨胀土的力学行为与本构模拟. 岩土工程学报. 2025(04): 695-704 . 本站查看
    4. 李佳文,陈高明,田世龙,韩博文,冯怀平,杨志浩. 土体含水率对振动压实的影响及电阻率演化特征研究. 振动与冲击. 2025(07): 16-25 .
    5. 吴炎,胡坤,姜马欢,李荟楠,彭哲. 两种气体作用下非饱和江边吹填砂三轴试验研究. 人民长江. 2024(02): 211-215+230 .
    6. 赵中航,林昱利,郭浩天,刘全想,任淇淇. 温度及饱和度对粉质黏土变形特性的影响. 低温建筑技术. 2024(02): 119-123 .
    7. 赵习武. 土工格室在库岸非饱和土边坡稳定性治理中的应用. 水利技术监督. 2024(06): 276-278+282 .
    8. 张莹,刘忠,谢文博. 非饱和土地基的承载比试验分析. 工程与建设. 2024(02): 417-419 .
    9. 尹义豪,钟小春,何子良,黄思远,何纯豪,高始军,张箭. 考虑压力、温度效应的黏性土黏附强度变化规律研究. 现代隧道技术. 2024(03): 175-183 .
    10. 朱振慧,赵连军,张防修,黄李冰. 基于黏粒含量的黄河下游堤防土水特征曲线预测研究. 人民黄河. 2024(10): 55-61 .
    11. 陈可,王琛,梁发云,汪中卫. 考虑水力滞后与变形耦合的非饱和土持水曲线模型. 岩土力学. 2024(12): 3694-3704+3716 .
    12. 李纯,王煜斌,王刚. 层状土体变特性及变形计算方法研究进展. 水利与建筑工程学报. 2023(04): 1-9 .
    13. 权国绍,刘鹏. 强降雨条件下高填路段路基滑坡稳定性数值优化分析. 粘接. 2023(11): 165-168 .
    14. 周子宜. 鸡姆塘水库大坝除险加固渗流与坝坡稳定分析. 水利科学与寒区工程. 2023(11): 33-36 .
    15. 上官云龙,李东鑫,王罡. 冻融循环对膨胀土力学特性的影响及本构描述. 吉林建筑大学学报. 2023(06): 33-38 .

    Other cited types(11)

Catalog

    Article views (418) PDF downloads (125) Cited by(26)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return