• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
TAN Xin, HU Zheng-bo, FENG Long-jian, ZHAO Ming-hua. Three-dimensional discrete-continuous coupled numerical simulation of a single stone column in soft soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 347-355. DOI: 10.11779/CJGE202102015
Citation: TAN Xin, HU Zheng-bo, FENG Long-jian, ZHAO Ming-hua. Three-dimensional discrete-continuous coupled numerical simulation of a single stone column in soft soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 347-355. DOI: 10.11779/CJGE202102015

Three-dimensional discrete-continuous coupled numerical simulation of a single stone column in soft soils

More Information
  • Received Date: April 08, 2020
  • Available Online: December 04, 2022
  • The discrete-continuous coupled numerical model is used to simulate the complete bearing and failure process of a single stone column in soft soils. The three-dimensional polyhedron considering the actual gravel shape is used to simulate the stone column, and the finite difference grid is used to model the soft soils. The load-settlement curve and bulging deformation curves obtained by the numerical simulation are in good agreement with the model test results. The stone column modeled by the discrete element method can effectively reflect its deformation and failure characteristics, without using complex constitutive model. The column-soil interactions can be well revealed by the coupled simulation scheme. The bearing and failure process is summarized through the analysis on the load-settlement curve, the stress and strain field of the surrounding soils, and the contact force chains of the stone column. The relationship between the macroscopic deformation and failure behaviors of the stone column and the microscopic grain movement is summarized. The bearing mechanism of the stone column can be well explained according to the structure and shape of the force chain networks inside the column body.
  • [1]
    刘汉龙, 赵明华. 地基处理研究进展[J]. 土木工程学报, 2016, 49(1): 103-122. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201601013.htm

    LIU Han-long, ZHAO Ming-hua. Review of ground improvement technical and its application in China[J]. China Civil Engineering Journal, 2016, 49(1): 103-122. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201601013.htm
    [2]
    郭尤林, 赵明华, 彭文哲. 基于改进应变楔模型的固体-散体串联组合桩鼓胀变形及沉降分析[J]. 岩土工程学报, 2019, 41(11): 2149-2155. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201911025.htm

    GUO You-lin, ZHAO Ming-hua, PENG Wen-zhe. Lateral bulgings and settlements of solid-bulk tandem compound piles based on modified strain wedge model[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2149-2155. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201911025.htm
    [3]
    陈建峰, 顾子昂, 王兴涛, 等. 冻融条件下加筋碎石桩复合地基路堤性状研究[J]. 岩土工程学报, 2020, 42(8): 1394-1400. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202008005.htm

    CHEN Jian-feng, GU Zi-ang, WANG Xin-tao, et al. Behaviour of embankment on composite foundation with geosynthetic-encased stone columns under freeze-thaw condition[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1394-1400. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202008005.htm
    [4]
    谭鑫, 冯龙健, 赵明华, 等. 刚性基础下筋箍碎石桩复合地基桩土应力比计算模型[J]. 中国公路学报, 2019, 32(9): 42-50. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201909005.htm

    TAN Xin, FENG Long-jian, ZHAO Ming-hua, et al. Calculation model for stress concentration ratio of composite foundation reinforced by geosynthetic-encased stone columns[J]. China Journal of Highway and Transport, 2019, 32(9): 42-50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201909005.htm
    [5]
    陈建峰, 韩杰. 夯扩碎石桩群桩承载性状研究[J]. 中国公路学报, 2010, 23(1): 26-31. doi: 10.3969/j.issn.1001-7372.2010.01.005

    CHEN Jian-feng, HAN Jie. Research on bearing behavior of rammed aggregate pier group[J]. China Journal of Highway and Transport, 2010, 23(1): 26-31. (in Chinese) doi: 10.3969/j.issn.1001-7372.2010.01.005
    [6]
    赵明华, 顾美湘, 张玲, 等. 竖向土工加筋体对碎石桩承载变形影响的模型试验研究[J]. 岩土工程学报, 2014, 36(9): 1587-1593. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201409006.htm

    ZHAO Ming-hua, GU Mei-xiang, ZHANG Ling, et al. Model tests on influence of vertical geosynthetic-encasement on performance of stone columns[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1587-1593. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201409006.htm
    [7]
    陈建峰, 韩杰. 夯扩碎石桩单桩载荷试验数值模拟[J]. 岩土工程学报, 2009, 31(9): 1366-1370. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200909011.htm

    CHEN Jian-feng, HAN Jie. Numerical modeling of loading tests on a rammed aggregate pier[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(9): 1366-1370. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200909011.htm
    [8]
    蒋敏敏, 肖昭然, 蔡正银. 高速公路碎石桩复合地基加固数值模拟[J]. 公路, 2012, 31(1): 8-12. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201201004.htm

    JIANG Min-min, XIAO Zhao-ran, CAI Zheng-yin. Numerical simulation of stone columns reinforced foundation of expressway[J]. Highway, 2012, 31(1): 8-12. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201201004.htm
    [9]
    王复明, 方宏远, 曹凯, 等. 高聚物碎石桩模型试验及数值分析[J]. 岩土工程学报, 2018, 40(增刊2): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S2003.htm

    WANG Fu-ming, FANG Hong-yuan, CAO Kai, et al. Model tests and numerical analyses of polymer gravel piles[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S2003.htm
    [10]
    蒋明镜, 肖俞, 陈双林, 等. 砂土中单桩竖向抗压承载机制的离散元分析[J]. 岩土力学, 2010, 31(增刊2): 366-372. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2010S2066.htm

    JIANG Ming-jin, XIAO Yu, CHEN Shuang-lin, et al. Discrete element analysis of bearing mechanism of single pile in sand under vertical load[J]. Rock and Soil Mechanics, 2010, 31(S2): 366-372. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2010S2066.htm
    [11]
    谭鑫, 赵明华, 金宇轩, 等. 碎石桩单桩受荷模型试验的离散单元法数值模拟[J]. 湖南大学学报(自然科学版). 2019(1): 101-108. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201903014.htm

    TAN Xin, ZHAO Ming-hua, JIN Yu-xuan, et al. Numerical simulation of loading test on a single stone column using discrete element method[J]. Journal of Hunan University (Natural Sciences), 2019(1): 101-108. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201903014.htm
    [12]
    INDRARATNA B, NGO N T, RUJIKIATKAMJORN C, et al. Coupled discrete element-finite difference method for analyzing the load deformation behavior of a single stone column in soft soil[J]. Computers and Geotechnics, 2015, 63: 267-278.
    [13]
    TAN X, ZHAO M H, ZHU Z. Elastic properties calibration approach for discrete element method model based on Voronoi tessellation method[J]. Geotechnical and Geological Engineering. 2019, 37(3): 2227-2236.
    [14]
    TAN X, ZHAO M H, CHEN W. Numerical simulation of a single stone column in soft clay using the discrete-element method[J]. International Journal of Geomechanics, 2018, 18(12): 0418176.
    [15]
    TAN X, FENG L J, HU Z B, et al. A DEM-FDM coupled numerical study on the deformation and failure process of the isolated stone column in soft soil[J/OL]. Bulletin of Engineering Geology and the Environment, 2019. doi: 10.1007/s10064-019-01671-3.
    [16]
    GU M X, HAN J, ZHAO M H. Three-dimensional discrete-element method analysis of stresses and deformations of a single geogrid-encased stone column[J]. International Journal of Geomechanics, 2017, 9(17): 1-14.
    [17]
    GU M X, HAN J, ZHAO M H. Three-dimensional DEM analysis of single geogrid-encased stone columns under unconfined compression: a parametric study[J]. Acta Geotech, 2017, 12(3): 559-572.
    [18]
    STAHL M, KONIETZKY H. Discrete element simulation of ballast and gravel under special consideration of grain-shape, grain-size and relative density[J]. Granular Matter, 2011, 13(4): 417-428.
    [19]
    STAHL M, KONIETZKY H, KAMP L. Discrete element simulation of geogrid-stabilised soil[J]. Acta Geotechnica, 2014, 9(6): 1073-1084.
    [20]
    GE G, MEGUID M A. Effect of particle shape on the response of geogrid-reinforced systems: insights from 3D discrete element analysis[J]. Geotextiles and Geomembranes, 2018, 46(6): 685-698.
  • Cited by

    Periodical cited type(12)

    1. 刘正楠,张锐,唐德力,刘昭京,周豫. 膨胀土微结构对膨胀行为的影响. 土木与环境工程学报(中英文). 2024(02): 60-69 .
    2. 杨丽,朱艺媛,李正,姚华彦. 合肥膨胀土膨胀力特性试验研究. 工程与建设. 2024(04): 766-768+786 .
    3. 胡瑾,周亚东. 原状膨胀土二维胀缩各向异性试验研究. 建筑技术开发. 2024(12): 158-161 .
    4. 吴岗,贾景超,巴潇,刘雨童,张雪茹. 膨胀土二维膨胀力特性研究. 农业与技术. 2023(02): 60-64 .
    5. 刘雨童,贾景超,巴潇,张雪茹,吴岗. 平面应变状态下膨胀土二维膨胀力特性研究. 农业与技术. 2023(05): 71-75 .
    6. 方瑾瑾,杨小林,冯以鑫. 原状膨胀土的三向膨胀力变化特性. 岩石力学与工程学报. 2023(S1): 3722-3730 .
    7. 林宇亮,张震,罗桂军,肖洪波,杨果林,鲁立,段君义. 膨胀土边坡的水平膨胀力及桩板结构内力分析. 中南大学学报(自然科学版). 2022(01): 140-149 .
    8. 吕玺琳,范琪,刘泳钢,江杰. 含水率变化对膨胀土地基单桩承载特性影响数值模拟. 结构工程师. 2022(03): 117-122 .
    9. 张锐,龙明旭,刘昭京,郑健龙,刘正楠. 膨胀土的二维膨胀各向异性试验研究. 中国公路学报. 2022(10): 65-74 .
    10. 王玉平,王哲,赵雨,易发成,朱宝龙,吴亚东. 高压实膨润土-砂混合物膨胀性能实验研究. 中国矿业. 2021(09): 173-180 .
    11. 覃永富,卢望,袁梦祥,沈泰宇,李贤,汪时机. 巨大芽孢杆菌改良邯郸强膨胀土试验研究. 西南师范大学学报(自然科学版). 2020(08): 87-95 .
    12. 张锐,赵旭,郑健龙,刘正楠. 膨胀土侧向膨胀力试验研究与应用. 中国公路学报. 2020(09): 22-31 .

    Other cited types(16)

Catalog

    Article views PDF downloads Cited by(28)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return