DENG Huang-shi, FU He-lin, SHI Yue. Calculation of surface settlement caused by excavation of shield tunnels with small turning radius[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 165-173. DOI: 10.11779/CJGE202101019
    Citation: DENG Huang-shi, FU He-lin, SHI Yue. Calculation of surface settlement caused by excavation of shield tunnels with small turning radius[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 165-173. DOI: 10.11779/CJGE202101019

    Calculation of surface settlement caused by excavation of shield tunnels with small turning radius

    More Information
    • Received Date: June 14, 2020
    • Available Online: December 04, 2022
    • The settlement deformation caused by the construction of shield tunnels with small turning radius curve is very complicated, but the corresponding analytical method of deformation prediction is still not clear. According to the results of the previous researches, the formation loss model for construction of shield tunnels with curved section is established. Based on the mirror image method and the Mindlin solution, the formula for calculating the surface settlement caused by the excavation of shield tunnels with curved section is derived and applied to the calculation of engineering examples. Finally, the surface deformation laws and influencing factors of construction of shield tunnels with curved section are analyzed. The results show that the model for formation loss of curved section is reasonable and the derived formula is applicable to practical projects. The longitudinal surface settlement varies greatly in the range of 3 times the diameter of the hole close to the cutter head, a slight bulge on the surface within 3 times the hole diameter in front of the cutter head, and the maximum settlement position is located at 3 ~ 4 times the hole diameter behind the cutter head. The surface transverse settlement groove is asymmetrically distributed, and the maximum settlement position is at the inner side of the bend, about 1 time the hole diameter from the center line of the cutter disc. The surface settlement caused by formation loss is mainly affected by the turning radius and the length of the shield and shell, and the displacement degree of the surface transverse settlement groove is mainly affected by the diameter of the cutter disc.
    • [1]
      魏纲, 张世民, 齐静静, 等. 盾构隧道施工引起的地面变形计算方法研究[J]. 岩石力学与工程学报, 2006, 25(增刊1): 3317-3323. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S1111.htm

      WEI Gang, ZHANG Shi-min, QI Jing-jing, et al. Study on calculation method of ground deformation induced by tunnel construction[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(S1): 3317-3323. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S1111.htm
      [2]
      PECK R B. Deep excavation and tunneling in soft ground[C]//Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, 1969, Mexico: 225-281.
      [3]
      马险峰, 王俊淞, 李削云, 等. 盾构隧道引起地层损失和地表沉降的离心模型试验研究[J]. 岩土工程学报, 2012, 34(5): 942-947. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201205027.htm

      MA Xian-feng, WANG Jun-song, LI Xiao-yun, et al. Centrifuge modeling of ground loss and settlement caused by shield tunnelling in soft ground[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(5): 942-947. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201205027.htm
      [4]
      张洋, 刘陕南, 吴俊, 等. 盾构隧道掘进时地层参数变化对地表沉降的敏感性研究[J]. 现代隧道技术, 2019, 56(4): 127-134. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201904021.htm

      ZHANG Yang, LIU Shan-nan, WU Jun, et al. Sensitivity and its impact of strata parameters on ground surface settlements during shield tunnelling[J]. Modern Tunnelling Technology, 2019, 56(4): 127-134. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201904021.htm
      [5]
      张明聚, 张振波, 陈锋. 高压富水碎裂状岩层小半径曲线盾构隧道施工技术[J]. 现代隧道技术, 2018, 55(6): 197-203, 209. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201806030.htm

      ZHANG Ming-ju, ZHANG Zhen-bo, CHEN Feng. Construction techniques for the small-radius curved shield tunnels in water-rich fractured stratum with high pressure[J]. Modern Tunnelling Technology, 2018, 55(6): 197-203, 209. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201806030.htm
      [6]
      ZHANG Ming-ju, LI Shao-hua, LI Peng-fei. Numerical analysis of ground displacement and segmental stress and influence of yaw excavation loadings for a curved shield tunnel[J]. Computers and Geotechnics, 2020, 118: 103325. doi: 10.1016/j.compgeo.2019.103325
      [7]
      张雪辉, 陈吉祥, 白云, 等. 类矩形土压平衡盾构施工引起的地表变形[J]. 浙江大学学报(工学版), 2018, 52(2): 317-324. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201802014.htm

      ZHANG Xue-hui, CHEN Ji-xiang, BAI Yun, et al. Ground surface deformation induced by quasi-rectangle EPB shield tunneling[J]. Journal of Zhejiang University (Engineering Science), 2018, 52(2): 317-324. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201802014.htm
      [8]
      吴昌胜, 朱志铎, 宋世攻, 等.软土地层大直径泥水盾构掘进引起的地面变形分析[J]. 岩土工程学报, 2019, 41(增刊1): 169-172. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S1044.htm

      WU Chang-sheng, ZHU Zhi-duo, SONG Shi-gong, et al. Ground settlement caused by large-diameter slurry shield during tunnel construction in soft soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 169-172. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S1044.htm
      [9]
      孙捷城, 路林海, 王国富, 等. 小半径曲线盾构隧道掘进施工地表变形计算[J]. 中国铁道科学, 2019, 40(5): 63-72. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201905010.htm

      SUN Jie-cheng, LU Lin-hai, WANG Guo-fu, et al. Calculation method of surface deformation induced by small radius curve shield tunneling construction[J]. China Railway Science, 2019, 40(5): 63-72. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201905010.htm
      [10]
      郝润霞. 软土地区曲线段盾构隧道超挖量与注浆量分析[J]. 地下空间与工程学报, 2013, 9(5): 1132-1136. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201305031.htm

      HAO Run-xia. Analysis of over-excavation volume and synchronous grouting volume for the shield tunnel at curve section of soft soil area[J]. Chinese Journal of Underground Space and Engineering, 2013, 9(5): 1132-1136. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201305031.htm
      [11]
      陈剑, 李智明. 急曲线隧道盾构超挖量及铰接角的理论算法[J]. 中国公路学报, 2017, 30(8): 66-73. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201708007.htm

      CHEN Jian, LI Zhi-ming. Theoretical algorithm for over-excavated volume and articulation angle during shield tunneling along sharp curves[J]. China Journal of Highway and Transport, 2017, 30(8): 66-73. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201708007.htm
      [12]
      SAGASETA C. Analysis of undraind soil deformation due to ground loss[J]. Géotechnique, 1987, 37(3): 301-320.
      [13]
      姜忻良, 赵志民. 镜像法在隧道施工土体位移计算中的应用[J]. 哈尔滨工业大学学报, 2005(6): 801-803. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX200506024.htm

      JIANG Xin-liang, ZHAO Zhi-min. Application of image method in calculation of tunneling-induced soil displacement[J]. Journal of Harbin Institute of Technology, 2005(6): 801-803. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX200506024.htm
      [14]
      MINDLIN R D. Force at a point in the interior of a semi-infinite solid[J]. Physics, 1936, 7(5): 195-202.
      [15]
      梁荣柱, 夏唐代, 林存刚, 等. 盾构推进引起地表变形及深层土体水平位移分析[J]. 岩石力学与工程学报, 2015, 34(3): 583-593. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201503017.htm

      LIANG Rong-zhu, XIA Tang-dai, LIN Cun-gang, et al. Analysis of ground surface displacement and horizontal displacement of deep soil induced by shield advance[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(3): 583-593. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201503017.htm
      [16]
      魏纲, 周洋, 魏新江. 盾构隧道施工引起的工后地面沉降研究[J]. 岩石力学与工程学报, 2013, 32(增刊1): 2891-2896. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S1040.htm

      WEI Gang, ZHOU Yang, WEI Xin-jiang. Research on post-construction surface settlement caused by shield tunneling[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S1): 2891-2896. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S1040.htm
    • Related Articles

      [1]ZHANG Chen, PAN Chaofan, CAI Zhengyin, ZHANG Xingxing, WANG Xudong. Experimental study on influences of deformation characteristics of salinized silty soil at dam base in northern Xinjiang[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(S1): 201-207. DOI: 10.11779/CJGE2025S10047
      [2]HAN Zhong, ZOU Weilie, PEI Qiuyang, WANG Xiequn, ZHANG Hongri. Effects of humidity and freeze-thaw cycles on compression and pore structure characteristics of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 495-505. DOI: 10.11779/CJGE20230367
      [3]XIA Hao-cheng, WANG Shi-ji, LI Xian, YANG Xun. Consolidation characteristics of unsaturated sandy clayey purple soils[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 121-125. DOI: 10.11779/CJGE2022S1022
      [4]HUANG Jue-hao, WANG Ying-wu, CHEN Jian, LIU Fu-sheng, HOU Feng, FU Xiao-dong, MA Chao. Experimental study on deformation behaviors of overconsolidated clay under cyclic confining pressure[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 245-248. DOI: 10.11779/CJGE2021S2058
      [5]ZHAO Ze-ning, DUAN Wei, CAI Guo-jun, LIU Song-yu, CHANG Jian-xin, FENG Hua-lei. Evaluation of stress history of clays based on intelligent CPTU machine learning algorithm[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 104-107. DOI: 10.11779/CJGE2021S2025
      [6]LIU Xiao-yan, CAI Guo-jun, ZOU Hai-feng, LI Xue-peng, LIU Song-yu. Prediction of stress history and strength of cohesive soils based on CPTU and data fusion techniques[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1270-1278. DOI: 10.11779/CJGE201907011
      [7]GAO Yan-bin, CHEN Zhong-qing. OCR of Shanghai soft clay and its geological causes[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 79-82. DOI: 10.11779/CJGE2017S2020
      [8]SHEN Yang, ZHOU Jian, GONG Xiaonan, LIU Hanlong. Influence of principal stress rotation on overconsolidated clay[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1514-1519.
      [9]Ma Shidong. On the Stress-Strain-Strength Characteristics of Quasi-Overconsolidated Clay[J]. Chinese Journal of Geotechnical Engineering, 1987, 9(1): 53-60.
      [10]Don Yi. Deformation Properties of Over-consolidation Clay[J]. Chinese Journal of Geotechnical Engineering, 1984, 6(5): 1-12.
    • Cited by

      Periodical cited type(2)

      1. 王军,刘志明,蔡国军,叶飞龙,宋小进. 基于砂土界面剪切试验的自传感压电土工电缆监测效果评价. 岩土工程学报. 2023(10): 2023-2031 . 本站查看
      2. 崔新壮,包振昊,郝建文,杜业峰,张圣琦,李向阳,赵延涛. 重载公路路基动力响应现场测试与三维空间分布规律. 中国公路学报. 2023(10): 75-83 .

      Other cited types(3)

    Catalog

      Article views (339) PDF downloads (257) Cited by(5)
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return