JIANG Ming-jing, LI Guang-shuai, CAO Pei, WU Xiao-feng. Development of miniature triaxial apparatus for testing of macro- and micro-mechanical behaviors of soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 6-10. DOI: 10.11779/CJGE2020S1002
    Citation: JIANG Ming-jing, LI Guang-shuai, CAO Pei, WU Xiao-feng. Development of miniature triaxial apparatus for testing of macro- and micro-mechanical behaviors of soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 6-10. DOI: 10.11779/CJGE2020S1002

    Development of miniature triaxial apparatus for testing of macro- and micro-mechanical behaviors of soils

    More Information
    • Received Date: June 04, 2020
    • Available Online: December 07, 2022
    • In order to explore the microscopic mechanisms associated with the macroscopic mechanical properties of soil, it is necessary to investigate the microscopic mechanical behaviors of soil. Based on the conventional triaxial apparatus, a miniature triaxial apparatus suitable for industrial CT system scanning is developed, which includes loading device and acquisition control system. The main features are as follows. The loading device can be put into CT equipment for rotary scanning because of small size and light weight. The specimen can be scanned clearly to obtain the microstructure and mechanical information of soil under triaxial stress. The reliable test data can be obtained. The miniature triaxial apparatus has strong compatibility, which does not affect the function of CT and does not also refit CT. It also has the advantage of convenient operation and low price. The contrast tests for the dry Toyoura sand samples are carried out by the miniature triaxial apparatus and conventional triaxial apparatus. The results show the stress-strain relationship and angle of internal friction obtained from miniature triaxial apparatus are in agreement with that obtained from the conventional triaxial apparatus. There is little difference on angles of internal friction obtained by two apparatus. Thus the reliability of the miniature triaxial apparatus is verified.
    • [1]
      蒋明镜. 现代土力学研究的新视野——宏微观土力学[J]. 岩土工程学报, 2019, 41(2): 195-254. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902002.htm

      JIANG Ming-jing. New paradigm for modern soil mechanics: Geomechanics from micro to macro[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 195-254. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902002.htm
      [2]
      AMOROSI A, RAMPELLO S. An experimental investigation into the mechanical behaviour of a structured stiff clay[J]. Géotechnique, 2007, 57(2): 153-166. doi: 10.1680/geot.2007.57.2.153
      [3]
      JIANG M J, SUN Y G, LI L Q, et al. Contact behavior of idealized granules bonded in two different interparticle distances: an experimental investigation[J]. Mechanics of Materials, 2012, 55(14): 1-15.
      [4]
      JIANG M J, YU H S, HARRIS D. A novel discrete model for granular material incorporating rolling resistance[J]. Computers and Geotechnics, 2005, 32(5): 340-357. doi: 10.1016/j.compgeo.2005.05.001
      [5]
      COOP M R, SORENSEN K K, FREITAS T B, et al. Particle breakage during shearing of a carbonate sand[J]. Geotechnique, 2004, 54(3): 157-163. doi: 10.1680/geot.2004.54.3.157
      [6]
      WIEBICKE M, ANDO E, VIGGIANI G, et al. Measuring the evolution of contact fabric in shear bands with X-ray tomography[J]. Acta Geotechnica, 2020, 15(1): 79-93. doi: 10.1007/s11440-019-00869-9
      [7]
      王登科, 张平, 魏建平, 等. CT可视化的受载煤体三维裂隙结构动态演化试验研究[J]. 煤炭学报, 2019(增刊2): 574-584. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2019S2020.htm

      WANG Deng-ke, ZHANG Ping, WEI Jian-ping, et al. Research on dynamic evolution of 3D fracture structure of loaded coal body based on CT visualization[J]. Journal of China Coal Society, 2019(S2): 574-584. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2019S2020.htm
      [8]
      葛修润, 任建喜, 蒲毅彬, 等. 煤岩三轴细观损伤演化规律的CT动态试验[J]. 岩石力学与工程学报, 1999, 18(5): 497-502. doi: 10.3321/j.issn:1000-6915.1999.05.001

      GE Xiu-run, REN Jian-xi, PU Yi-bin, et al. A real-in-time CT triaxial testing study of meso-damage evolution law of coal[J]. Chinese Journal of Rock Mechanics and Engineering, 1999, 18(5): 497-502. (in Chinese) doi: 10.3321/j.issn:1000-6915.1999.05.001
      [9]
      陈正汉, 卢再华, 蒲毅彬. 非饱和土三轴仪的CT机配套及其应用[J]. 岩土工程学报, 2001, 23(4): 387-392. doi: 10.3321/j.issn:1000-4548.2001.04.001

      CHEN Zheng-han, LU Zai-hua, PU Yi-bin. The matching of computerized tomography with triaxial test apparatus for unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(4): 387-392. (in Chinese) doi: 10.3321/j.issn:1000-4548.2001.04.001
      [10]
      李小春, 曾志姣, 石露, 等. 岩石微焦CT扫描的三轴仪及其初步应用[J]. 岩石力学与工程学报, 2015, 34(6): 1128-1134. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201506006.htm

      LI Xiao-chun, ZENG Zhi-jiao, SHI Lu, et al. Triaxial apparatus for micro-focus CT scan of rock and its preliminary application[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(6): 1128-1134. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201506006.htm
      [11]
      庞旭卿, 胡再强, 李宏儒, 等. 黄土剪切损伤演化及其力学特性的CT-三轴试验研究[J]. 水利学报, 2016, 47(2): 180-188. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201602007.htm

      PANG Xu-qing, HU Zai-qiang, LI Hong-ru, et al. Structure damage evolution and mechanical properties of loess by CT-triaxial test[J]. Journal of Hydraulic Engineering, 2016, 47(2): 180-188. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201602007.htm
      [12]
      曹剑秋, 张巍, 肖瑞, 等. 南京粉砂三轴压缩过程中的三维孔隙结构演化特征[J]. 地球科学与环境学报, 2018, 40(4): 487-496. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201804010.htm

      CAO Jian-qiu, ZHANG Wei, XIAO Rui, et al. Characteristics of 3D pore structure evolution 0f Nanjing silty sand during the triaxial compression[J]. Journal of Earth Sciences and Environment, 2018, 40(4): 487-496. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201804010.htm
      [13]
      程壮, 王剑锋. 用于颗粒土微观力学行为试验的微型三轴试验仪[J]. 岩土力学, 2018, 39(3): 1123-1129. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201803043.htm

      CHENG Zhuang, WANG Jian-feng. A mini-triaxial apparatus for testing of micro-scale mechanical behavior of granular soils[J]. Rock and Soil Mechanics. 2018, 39(3): 1123-1129. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201803043.htm
      [14]
      土工试验方法标准:GB/T 50123—2019[S]. 2019.

      Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. 2019. (in Chinese)
    • Cited by

      Periodical cited type(26)

      1. 别红亮,王振军,仪晓立,惠冰,侯向阳,付邦萌. 桩端桩侧联合后注浆对基桩竖向承载力发挥的影响分析. 公路与汽运. 2025(02): 107-112 .
      2. 李龙. 灌注桩后注浆施工技术在建筑工程施工中的应用. 城市建设理论研究(电子版). 2025(10): 34-36 .
      3. 张丽. 建筑工程施工中灌注桩后注浆施工技术. 居业. 2025(03): 61-63 .
      4. 王小威. 后注浆技术对灌注桩承载力的影响分析. 广州建筑. 2025(04): 1-5 .
      5. 王衍升,李召峰,张明,林春金,吕思忠,姚望. 基于相似原理的荷载传递模型及桩侧挤密加固效果数值分析. 工程科学与技术. 2025(03): 134-146 .
      6. 李国荣. 高层建筑灌注桩后注浆施工技术. 建筑机械化. 2024(01): 97-100 .
      7. 王卫国,万志辉,戴国亮,钱晓楠,胡涛,周峰,张鹏. 分布式后压浆超长大直径灌注桩竖向承载性能试验研究. 建筑结构学报. 2024(04): 155-165 .
      8. 仪晓立,王振军,侯向阳,惠冰,孙巍,张旭,苗鑫. 工艺参数对灌注桩桩基后注浆浆液扩散的影响. 矿冶. 2024(01): 9-14 .
      9. 黄袁媛,王康宇,宁英杰,叶经斌. 土岩结合地层纯钢双筏板预制旋挖钻机作业平台优化设计研究. 城市建筑. 2024(07): 229-232 .
      10. 周志军,田叶青,张铭驿,王康超,朱珊珊. 黄土地区桩端后注浆群桩基础承载特性分析. 工业建筑. 2024(03): 182-190 .
      11. 杨林,周勇,黄瑶婷,李章银,周昌林. 袖阀管应用于灌注桩后注浆的现场试验. 四川建材. 2024(05): 68-69+78 .
      12. 赵立财. 不同荷载作用下桥梁摩擦桩承载特性研究. 水资源与水工程学报. 2024(02): 201-206+216 .
      13. 李玉灿. 桩端后注浆灌注桩承载力异常原因探讨. 岩土工程技术. 2024(04): 436-439 .
      14. 李可霞. 灌注桩后注浆施工技术在建筑工程施工中的应用. 科技资讯. 2024(14): 145-147 .
      15. 郭震山,陈汝先. 桩底复合式后压浆桥梁桩基承载特性试验研究. 地下空间与工程学报. 2024(06): 1952-1959 .
      16. 何欢,寇磊. 基于扩孔理论的劈裂注浆启劈压力解析. 应用数学和力学. 2024(12): 1555-1566 .
      17. 许方安,陈国勋. 水利工程基坑开挖对临近桥梁桩基的影响及对策分析. 水利建设与管理. 2023(02): 31-37+10 .
      18. 高晓飞. 灌注桩后注浆施工技术在建筑工程施工中的应用. 工程技术研究. 2023(06): 50-52 .
      19. 朱海燕. 温州铁路S1线复合式后注浆灌注桩试桩技术研究. 建筑技术. 2023(12): 1530-1533 .
      20. 王鑫玥. 桩底复合式后压浆桩基承载机理和施工工艺研究. 山西交通科技. 2023(03): 95-97+117 .
      21. 李杰,蔡润,彭涛,彭界超,戴国亮,王谦,王涛,马胜龙. 声波透射法及自平衡法在超高层嵌岩灌注试桩中的应用分析. 水利与建筑工程学报. 2023(04): 209-217 .
      22. 李光磊,富志根,贺敏,何欧,时洪斌,孙建. 深厚软土地层钻孔灌注桩复合式后压浆试验研究. 铁道建筑技术. 2023(10): 20-23+69 .
      23. 成兵兵. 桥梁桩基后压浆技术研究进展. 山西交通科技. 2023(06): 93-96+107 .
      24. 杨松松,李吉阳,章定文. 沙漠地区钻孔灌注桩后注浆提升竖向承载力研究. 地基处理. 2022(S1): 115-120 .
      25. 刘华峰. 既有桥梁桩基础桩底注浆加固分析. 山东交通科技. 2022(04): 96-97+109 .
      26. 罗辉,张锐,聂如松,刘正楠. 红层软岩钢管微型桩抗压承载特性试验. 中国公路学报. 2022(11): 97-106 .

      Other cited types(9)

    Catalog

      Article views (282) PDF downloads (115) Cited by(35)
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return