• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
HUANG Xiao-hu, YI Wu, GONG Chao, HUANG Hai-feng, YU Qing. Reactivation and deformation mechanism of ancient landslides by excavation[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1276-1285. DOI: 10.11779/CJGE202007011
Citation: HUANG Xiao-hu, YI Wu, GONG Chao, HUANG Hai-feng, YU Qing. Reactivation and deformation mechanism of ancient landslides by excavation[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1276-1285. DOI: 10.11779/CJGE202007011

Reactivation and deformation mechanism of ancient landslides by excavation

More Information
  • Received Date: July 16, 2019
  • Available Online: December 05, 2022
  • The Dalixi ancient landslide in Xingshan County in the Three Gorges Reservoir area is taken as an example. Based on the analysis of its characteristics, the deformation characteristics and temporal-spatial laws of surface cracks of the ancient landside in the process of landslide revival are analyzed by use of geological survey, site inspection for nearly one year, artificial GPS displacement monitoring data and automatic monitoring data. Based on the Geo-Studio simulation, the influences of excavation and rainfall on the revival deformation of the ancient landslide and the primary and secondary relationships are determined. The results show that: (1) The Dalixi landslide is a middle-steep consequent ancient rock landslide with soft layer in geological history period. (2) The deformation of Dalixi landslide is closely related to excavation. In the early stage, it concentrates near the leading edge Q3 of the first excavation area, and gradually appears along the excavation direction at the leading edge Q4 and Q5, and finally evolves into the secondary landslides near the leading edge Q5. At the same time, the vertical deformation gradually advances to the middle and rear, showing the characteristics of progressive retrogression. (3) The excavation is the inducing factor for the revival of landslide deformation, and the rainfall is the stimulating factor. Both of them work together to promote the sustainable development of landslide deformation
  • [1]
    CRUDEN D M, VARNES D J. Landslide types and processes, special report, transportation research board[J]. National Academy of Sciences, 1996, 247: 36-75.
    [2]
    BURDA J, HARTVICH F, VALENTA J, et al. Climate- induced landslide reactivation at the edge of the Most Basin (Czech Republic): progress towards better landslide prediction[J]. Natural Hazards and Earth System Sciences, 2013, 13: 361-374. doi: 10.5194/nhess-13-361-2013
    [3]
    RONCHETTI F, BORGATTI L, CERVI F, et al. The Valoria landslide reactivation in 2005 — 2006 (Northern Apennines, Italy)[J]. Landslides, 2007, 4(2): 189-195. doi: 10.1007/s10346-006-0073-9
    [4]
    DENG H, WU L Z, HUANG R Q, et al. Formation of the Siwanli ancient landslide in the Dadu River, China[J]. Landslides, 2017, 14(1): 385-394. doi: 10.1007/s10346-016-0756-9
    [5]
    吴瑞安, 张永双, 郭长宝, 等. 川西松潘上窑沟古滑坡复活特征及危险性预测研究[J]. 岩土工程学报, 2018, 40(9): 1659-1667. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201809014.htm

    WU Rui-an, ZHANG Yong-shuang, GUO Chang-bao. Reactivation characteristics and hazard prediction of Shangyaogou ancient landslide in Songpan County of Sichuan Province[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1659-1667. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201809014.htm
    [6]
    郭健, 许模, 赵勇, 等. 黑水河库区某古滑坡形成及复活机制[J]. 成都理工大学学报(自然科学版), 2013, 40(6): 721-728. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201306012.htm

    GUO Jian, XU Mo, ZHAO Yong, et al. Formation and reactivation mechanism of an ancient landslide in Heishui reservoir of Minjiang River, China[J]. Journal of Chengdu University of Technology, 2013, 40(6): 721-728. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201306012.htm
    [7]
    李明辉, 李浩然, 王东辉. 大渡河上游亚喀则滑坡复活变形机理及发展趋势分析[J]. 水土保持研究, 2014, 21(1): 305-309. https://www.cnki.com.cn/Article/CJFDTOTAL-STBY201401059.htm

    LI Ming-hui, LI Hao-ran, WANG Dong-hui. The revival mechanism and development tendency of Yakaze landslide in the upper reaches of Dadu River[J]. Research of Soil and Water Conservation, 2014, 21(1): 305-309. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-STBY201401059.htm
    [8]
    付博, 严明, 李波, 等. 岷江某水电站库区#1滑坡复活机制分析[J]. 工程地质学报, 2008, 16(1): 11-16. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200801004.htm

    FU Bo, YAN Ming, LI Bo, et al. Analysis of revivification mechanism for a landslide on a hydropower station reservoir in Minjiang[J]. Journal of Engineering Geology, 2008, 16(1): 11-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200801004.htm
    [9]
    WANG J J, LIANG Y, ZHANG H P, et al. A loess landslide induced by excavation and rainfall[J]. Landslides, 2014, 11(1): 141-152.
    [10]
    GU D M, HUANG D, YANG W D, et al. Understanding the triggering mechanism and possible kinematic evolution of a reactivated landslide in the Three Gorges Reservoir[J]. Landslides, 2017, 14(6): 2073-2087.
    [11]
    李明辉, 郑万模, 石胜伟, 等. 丹巴县甲居滑坡复活机制及其稳定性分析[J]. 山地学报, 2008, 26(5): 577-582. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA200805013.htm

    LI Ming-hui, ZHENG Wan-mo, SHI Sheng-wei, et al. The revival mechanism and stability analysis to Jiaju landslide of Danba county in Sichuan province[J]. Journal of Mountain Science, 2008, 26(5): 577-582. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA200805013.htm
    [12]
    张永双, 郭长宝, 周能娟. 金沙江支流冲江河巨型滑坡及其局部复活机理研究[J]. 岩土工程学报, 2013, 35(3): 445-453. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201303008.htm

    ZHANG Yong-shuang, GUO Chang-bao, ZHOU Neng-juan. Characteristics of Chongjianghe landslide at a branch of Jinsha River and its local reactivation mechanism[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 445-453. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201303008.htm
    [13]
    哈秋舲. 三峡工程永久船闸陡高边坡各向异性卸荷岩体力学研究[J]. 岩石力学与工程学报, 2001, 26(5): 605-610. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200105003.htm

    HA Qiu-ling. Study on the anisotropic unloading rock mass mechanics for the steep-high rock slope of the three gorges project permanent shiplock[J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 26(5): 605-610. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200105003.htm
    [14]
    盛谦. 深挖岩质边坡开挖扰动区与工程岩体力学性状研究[D]. 武汉: 中国科学院武汉岩土力学研究所, 2002.

    SHENG Qian. Excavation Disturbed Zone of Deep Cutting Rock Slopes and Mechanics Behaviour of Engineering Rock Mass[D]. Wuhan: Institute of Rock and Soil Mechanics, The Chinese Academy of Sciences, 2002. (in Chinese)
    [15]
    黄润秋, 林峰, 陈德基, 等. 岩质高边坡卸荷带形成及其工程性状研究[J]. 工程地质学报, 2001, 9(3): 228-229. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200103000.htm

    HUANG Run-qiu, LIN Feng, CHEN De-ji, et al. Formation mechanism of unloading fracture zone of high slopes and its engineering behaviors[J]. Journal of Engineering Geology, 2001, 9(3): 228-229. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200103000.htm
    [16]
    李明, 张嘎, 李焯芬, 等. 开挖对边坡变形影响的离心模型试验研究[J]. 岩土工程学报, 2011, 33(4): 667-672. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201104030.htm

    LI Ming, ZHANG Ga, LEE C F, et al. Centrifugal model tests on excavation-induced deformation of slopes[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 667-672. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201104030.htm
    [17]
    许强, 汤明高, 黄润秋. 大型滑坡监测预警与应急处置[M]. 北京: 科学出版社, 2015.

    XU Qiang, TANG Ming-gao, HUANG Run-qiu. Monitoring, Warning and Emergency Treatment of Large Landslide[M]. Beijing: Science Press, 2015. (in Chinese)
  • Related Articles

    [1]LIANG Hao, LI Dayong, WU Yuqi. Pull-out bearing behavior and failure mode of scaled suction caissons[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1928-1935. DOI: 10.11779/CJGE20230556
    [2]LIU Qi-fei, ZHUANG Hai-yang, CHEN Jia, WU Qi, CHEN Guo-xing. Tests on shear strength and failure mode of rubber particle-sand mixtures[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1887-1895. DOI: 10.11779/CJGE202110015
    [3]LÜ Bu, YANG Zhi-jun, WEI Xiu-dong, LU Ji-zhong, FU Xu-dong. Failure modes and constitutive model for weak interlayer of dam foundation with different inclination angles[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 189-192. DOI: 10.11779/CJGE2019S1048
    [4]ZHENG Gang, GUO Zhi-yi, YANG Xin-yu, ZHOU Hai-zuo, YU Xiao-xuan, ZHAO Jia-peng, XIA Bo-yang. Influences of stiffness of piles on failure modes of embankment of composite foundation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 49-52. DOI: 10.11779/CJGE2019S1013
    [5]YANG Bing, SUN Ming-xiang, WANG Run-ming, YANG Tao, FENG Jun, ZHOU De-pei. Shaking table tests on influences of water content of soils on dynamic failure modes and dynamic responses of slopes[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 759-767. DOI: 10.11779/CJGE201804021
    [6]YU Jian-lin, LI Jun-yuan, WANG Chuan-wei, ZHANG Jia-lin, GONG Xiao-nan, CHEN Chang-fu, SONG Er-xiang. Stability of composite foundation improved by rigid piles under embankment considering different failure modes of piles[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 37-40. DOI: 10.11779/CJGE2017S2010
    [7]FAN Gang, ZHANG Jian-jing, FU Xiao, WANG Zhi-jia, TIAN Hua. Energy identification method for dynamic failure mode of bedding rock slope with soft strata[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 959-966. DOI: 10.11779/CJGE201605024
    [8]SONG Fei, XIE Yong-li, YANG Xiao-hua, ZHANG Lu-yu. Failure mode of geocell flexible retaining wall with surcharge acting on backfill surface[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 152-155.
    [9]LI Xun-chang, MEN Yu-ming, ZHANG Tao, LIU Hong-jia, YAN Jing-ping. Experimental study on failure modes for anti-slide piles with a single anchor[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(5): 803.
    [10]ZHOU Jian, KONG Xiangli, WANG Xiaocun. Bearing capacity behaviours and failure modes of reinforced grounds[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(9): 1265-1269.
  • Cited by

    Periodical cited type(21)

    1. 艾楠,宋辰宁,王培森. 地铁运行对邻近建筑振动响应研究. 山东建筑大学学报. 2025(01): 32-40 .
    2. 杨超,朱硕,董文韬. 基于Citespace的城市轨道交通安全研究热点与前沿可视化分析. 交通与运输. 2025(01): 82-87 .
    3. 周腾飞. 地铁列车运行引起邻近建筑物振动响应研究. 四川水泥. 2025(02): 26-28 .
    4. 吴思豫,戚承志,卢春生,李太行,姜凯松,龙渊腾. 地铁运行对古城墙的振动影响. 工程建设与设计. 2025(03): 73-77 .
    5. 王凯,富志强,杨春波,王俊伟. 黄土地层公路隧道运营期下穿古长城动力响应研究. 公路. 2024(04): 416-421 .
    6. 张军. 深埋地铁隧道对临近桥梁桩基的扰动分析. 工程技术研究. 2024(07): 20-23+34 .
    7. 万颖君,金鑫,马光辉,张振宇,翟洪刚,汤方程,孙苗苗. 软土地区施工现场重载车辆对基坑周围环境振动实测分析. 华南地震. 2024(02): 128-135 .
    8. 花雨萌,谢伟平,陈斌. 地铁振动对建筑物竖向楼层响应的影响研究. 建筑结构学报. 2023(03): 122-129 .
    9. 邹超,冯青松,何卫. 列车运行引起地铁车辆段与上盖建筑环境振动研究综述. 交通运输工程学报. 2023(01): 27-46 .
    10. 孙志浩,李明睿,冯国辉,徐长节,黄展军,侯世磊,何小辉. 交通荷载下叠合式公轨隧道的力学性状研究. 铁道科学与工程学报. 2023(06): 2210-2221 .
    11. 贾宝新,周志扬,苑文雅,张晶. 基于等效质点峰值振动速度的高铁线路周边建筑结构振动评价研究. 岩土力学. 2023(09): 2696-2706 .
    12. 路德春,高泽军,孔凡超,马一丁,沈晨鹏,杜修力. 地铁列车运行诱发地面邻近建筑振动的数值模拟研究. 土木与环境工程学报(中英文). 2023(06): 113-124 .
    13. 肖迪,段旭,刘武超,邹愈,董琪,叶万军. 地铁振动作用下上部正交综合管廊动力响应试验研究. 防灾减灾工程学报. 2023(05): 1151-1159 .
    14. 王韵超,王思崎,郑茗旺,郑凌逶,谢新宇. 弹簧浮置板减振措施对地铁下穿不同结构建筑物振动影响实测及分析. 低温建筑技术. 2021(03): 51-54+59 .
    15. 谭佳,许炜萍,赵楚轩,王呼佳,杨朋,孙克国. 地铁过渡段结构振动响应特性与噪声分析. 城市轨道交通研究. 2021(05): 37-41+46 .
    16. 袁庆利. 运营期地铁列车振动下软黏土的动力响应及变形研究. 国防交通工程与技术. 2021(04): 25-30 .
    17. 汪益敏,刘品言,陶子渝,陈皓粤,周杰. 地铁车辆段直线电机列车车致振动的试验研究. 铁道科学与工程学报. 2021(09): 2436-2443 .
    18. 夏志强,凌可胜,董克胜,徐小扣,沈威,方火浪. 地铁列车曲线运行引起学校建筑物振动响应分析. 地震工程学报. 2021(06): 1377-1386 .
    19. 程保青,郭婧怡,蒋浩杰. 地铁车辆段咽喉区上盖建筑振动影响. 应用声学. 2021(06): 911-917 .
    20. 郑国琛,许航莉,祁皑,郭金龙. 地铁及地面交通环境振动实测与数值模拟研究. 中国环境科学. 2020(09): 4146-4154 .
    21. 孟坤,崔春义,许民泽,王启福,苏健. 地铁运行引起的临近桥梁结构振动分析. 深圳大学学报(理工版). 2020(06): 610-616 .

    Other cited types(18)

Catalog

    Article views (349) PDF downloads (191) Cited by(39)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return