• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
LI Tao, JIANG Ming-jing, SUN Ruo-han. DEM analysis of evolution law of bond degradation for structured soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1159-1166. DOI: 10.11779/CJGE202006022
Citation: LI Tao, JIANG Ming-jing, SUN Ruo-han. DEM analysis of evolution law of bond degradation for structured soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1159-1166. DOI: 10.11779/CJGE202006022

DEM analysis of evolution law of bond degradation for structured soils

More Information
  • Received Date: July 09, 2019
  • Available Online: December 07, 2022
  • The evolution of bond degradation is essential for analyzing the macro-and micro-scopic behaviors and establishing constitutive models for structured soils with cementation bond which is a kind of bonded granular material. The discrete element method is employed to analyze the evolution of bond degradation on account of the disadvantage of laboratory tests in bond breakage quantitative analysis. First, the discrete numerical sample is generated by installing a relatively completed bond contact model incorporating the interparticle rolling and twisting resistances and the influences of bond size on the contact stiffness and strength. The DEM simulation reproduces the key mechanical behaviors of one-dimensional compression, isotropic and anisotropic compressions, conventional triaxial and true triaxial tests on the DEM sample. The results show that the evolution of the degradation variable B0 is stress-path-dependent, while a new degradation variable Bσ is roughly stress-path-independent. An exponential function is recommended for Bσto describe the degradation of soil structure.
  • [1]
    BURLAND J B. On the compressibility and shear strength of natural clays[J]. Géotechnique, 1990, 40(3): 329-378. doi: 10.1680/geot.1990.40.3.329
    [2]
    LEROUEIL S, VAUGHAN P R. The general and congruent effects of structure in natural soils and weak rocks[J]. Géotechnique, 1990, 40(3): 467-488. doi: 10.1680/geot.1990.40.3.467
    [3]
    DAFALIAS Y F, POPOV E P. A model of nonlinearly hardening materials for complex loading[J]. Acta Mechanica, 1975, 21(3): 173-192. doi: 10.1007/BF01181053
    [4]
    HASHIGUCHI K. Subloading surface model in unconventional plasticity[J]. International Journal of Solids and Structures, 1989, 25(8): 917-945. doi: 10.1016/0020-7683(89)90038-3
    [5]
    YAO Y P, HOU W, ZHOU A N. UH model: three-dimensional unified hardening model for overconsolidated clays[J]. Géotechnique, 2009, 59(5): 451-469. doi: 10.1680/geot.2007.00029
    [6]
    NOVA R, CASTELLANZA R, TAMAGNINI C. A constitutive model for bonded geomaterials subject to mechanical and/or chemical degradation[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2003, 27(9): 705-732. doi: 10.1002/nag.294
    [7]
    ASAOKA A, NAKANO M, NODA T. Superloading yield surface concept for highly structured soil behavior[J]. Soils and Foundations, 2000,40(2): 99-110. doi: 10.3208/sandf.40.2_99
    [8]
    DESAI C S, TOTH J. Disturbed state constitutive modeling based on stress-strain and nondestructive behavior[J]. International Journal of Solids and Structures, 1996, 33(11): 1619-1650. doi: 10.1016/0020-7683(95)00115-8
    [9]
    沈珠江. 结构性黏土的弹塑性损伤模型[J]. 岩土工程学报, 1993, 15(3): 21-28. doi: 10.3321/j.issn:1000-4548.1993.03.003

    SHEN Zhu-jiang. An elasto-plastic damage model for cemented clays[J]. Chinese Journal of Geotechnical Engineering, 1993, 15(3): 21-28. (in Chinese) doi: 10.3321/j.issn:1000-4548.1993.03.003
    [10]
    JIANG M J, ZHANG F G, SUN Y G. An evaluation on the degradation evolutions in three constitutive models for bonded geomaterials by DEM analyses[J]. Computers and Geotechnics, 2014, 57: 1-16. doi: 10.1016/j.compgeo.2013.12.008
    [11]
    CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65. doi: 10.1680/geot.1979.29.1.47
    [12]
    蒋明镜, 刘静德, 孙渝刚. 基于微观破损规律的结构性土本构模型[J]. 岩土工程学报, 2013, 35(6): 1134-1139. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201306022.htm

    JIANG Ming-jing, LIU Jing-de, SUN Yu-gang. Constitutive model for structured soils based on microscopic damage law[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(6): 1134-1139. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201306022.htm
    [13]
    蒋明镜. 现代土力学研究的新视野—宏微观土力学[J]. 岩土工程学报, 2019, 41(2): 195-254. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902002.htm

    JIANG Ming-jing. New paradigm for modern soil mechanics: Geomechanics from micro to macro[J]. Chinese Journal of Geotechnical Engineering, 2019,41(2): 195-254. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902002.htm
    [14]
    JIANG M J, SHEN Z F, WANG J F. A novel three-dimensional contact model for granulates incorporating rolling and twisting resistances[J]. Computers and Geotechnics, 2015, 65: 147-163. doi: 10.1016/j.compgeo.2014.12.011
    [15]
    蒋明镜, 孙若晗, 李涛, 等. 一个非饱和结构性黄土三维胶结接触模型[J]. 岩土工程学报, 2019, 41(S2): 213-216. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S1055.htm

    JIANG Ming-jing, SUN Ruo-han, LI Tao, et al. A three-dimensional cementation contact model for unsaturated structural loess[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 213-216. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S1055.htm
    [16]
    ITASCA Consulting Group. Inc. Manual of partied flow code version 5.0[M]. 2014.
    [17]
    SHEN Z F, JIANG M J, WAN R. Numerical study of inter- particle bond failure by 3D discrete element method[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40(4): 523-545. doi: 10.1002/nag.2414
    [18]
    JIANG M J, KONRAD J M, LEROUEIL S. An efficient technique for generating homogeneous specimens for DEM studies[J]. Computers and Geotechnics, 2003, 30(7): 579-597. doi: 10.1016/S0266-352X(03)00064-8
    [19]
    YU A B. Discrete element method: an effective way for particle scale research of particulate matter[J]. Engineering Computations, 2004, 21(2/3/4): 205-214.
    [20]
    胡再强. 黄土结构性模型及黄土渠道的浸水变形试验与数值分析[D]. 西安: 西安理工大学, 2000.

    HU Zai-qiang. Inundation Deformation Test and Numerical Analysis on Loess Structural Model and Loess Canal[D]. Xi'an: Xi'an University of Technology, 2000. (in Chinese)
    [21]
    MACCARINI M. Laboratory Studies of Weakly Bonded Artificial Soil[D]. London: University of London, 1987.
    [22]
    张鹏. 非饱和黄土力学特性与剪切带的真三轴试验及离散元模拟研究[D]. 上海: 同济大学, 2018.

    ZHANG Peng. True Triaxial Experimental and DEM Analysis of the Mechanical Properties and Shear Band of Unsaturated loess[D]. Shanghai: Tongji University, 2018. (in Chinese)
    [23]
    REDDY K R, SAXENA S K. Effects of cementation on stress-train and strength characteristics of sands[J]. Soils and Foundations, 1993, 33(4): 121-134.
    [24]
    MEHRABADI M M, NEMAT-NASSER S, ODA M. On statistical description of stress and fabric in granular materials[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1982, 6(1): 95-108.
    [25]
    BAGI K. Stress and strain in granular assemblies[J]. Mechanics of Materials, 1996, 22(3): 165-177.
  • Related Articles

    [1]LIU Zhongxian, MENG Sibo, LI Wenxuan, ZHAO Jiawei, HUANG Zhenen. Evaluation method for stochasticity in seismic response of 3D sedimentary basins based on artificial neural network[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(3): 529-538. DOI: 10.11779/CJGE20221399
    [2]GAO Jie, ZHU Shi-min, CHEN Chang-fu. RBF neural network based creep model of red clay-anchor interface[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 122-126. DOI: 10.11779/CJGE2018S2025
    [3]LIU Xingyuan. Discussion on neural network application in civil engineering[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(4): 514-516.
    [4]GUO Wenbing, DENG Kazhong, ZOU Youfeng. Study on artificial neural network method for calculation of subsidence coefficient[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(2): 212-215.
    [5]ZHOU Jianping, YAN Shuwang. Artificial neural networksbased-model for forecasting critical height of GRW[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(6): 782-786.
    [6]CHEN Zhimin, JIA Lihong. BP networks in the forecast of bearing capacity of composite foundation with rammed expanded piles[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(3): 286-289.
    [7]CHEN Haijun, LI Nenghui, NIE Dexin, SHANG Yuequan. A model for prediction of rockburst by artificial neural network[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 229-232.
    [8]WANG Lianguo, SONG Yang. Combined ANN forecast of water-inrush from coal floor[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(4): 502-505.
    [9]CHEN Changyan, WANG Sijing, SHEN Xiaoke. Predicting models to estimate stability of rock slope based on artificial neural network[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(2): 157-161.
    [10]Cai Yudong, Gong Jiawen, Yao Linsheng. Artificial Neural Network Model for Prediction of Liquefaction of Sandy Soil[J]. Chinese Journal of Geotechnical Engineering, 1993, 15(6): 53-58.
  • Cited by

    Periodical cited type(25)

    1. 赵同彬,赵志刚,齐炎山,尹延春,牛旭,李淇凡. 基于大直径钻孔钻进多参量的煤体应力钻测方法. 煤炭科学技术. 2025(01): 122-132 .
    2. 马语航,何明明,李宁. XCY-2旋切触探系统研发及应用. 岩土力学. 2025(03): 1025-1038 .
    3. 易文豪,夏覃永,孙鸿强,何永义,王明年. 基于岩石可钻性指标的钻爆法隧道掌子面岩石坚硬程度智能判识. 中国铁道科学. 2025(02): 128-139 .
    4. 刘勇斌,张晓平,李馨芳,李德宏,陈广军,刘小波,熊雪飞,杨朗,李玉生. 基于冲击回转钻进的岩石强度随钻识别研究. 岩土力学. 2024(03): 857-866 .
    5. 何海峰. 工程勘察中钻进参数数字化技术应用探讨. 工程勘察. 2024(06): 12-16+23 .
    6. 郝建,刘河清,刘建康,吕家庆,郑义宁,刘建荣. 基于振动信号的岩石单轴抗压强度钻进预测实验研究. 岩石力学与工程学报. 2024(06): 1406-1424 .
    7. 盛益明,柴修伟,常志锋,刘建,李治全,向彬. 磷矿地下爆破随钻参数与岩体可爆性关系模型研究. 爆破. 2024(02): 120-126 .
    8. 吴俊. 基于多要素钻进信息的围岩分级方法研究. 科学技术创新. 2024(20): 157-160 .
    9. 程谞,汤华,吴振君,张勇慧,秦辉,王腾,贾泽庆,房昱纬. 矿山岩质边坡地层结构及岩体抗剪强度参数随钻智能识别方法. 工程科学与技术. 2024(05): 35-47 .
    10. 李萍丰,徐振洋,王雪帆,郭润泽,姜立春. 露天矿山爆破共享控制理论的基本方法. 爆破. 2024(03): 16-25+50 .
    11. 肖浩汉,曹瑞琅,王玉杰,赵宇飞,孙彦鹏. 随钻监测数据预处理方法研究. 水利学报. 2024(11): 1379-1390 .
    12. 王琦,高红科,冯帆. 岩体力学参数旋切钻进测试方法研究进展. 绿色矿山. 2024(04): 333-343 .
    13. 岳中文,戴诗清,李杨,岳小磊,李世辉,曹武. 煤巷液压锚杆钻机随钻参数采集系统及其应用. 矿业科学学报. 2023(01): 66-73 .
    14. 于庆磊,王宇恒,李友,曹永胜,蒲江涌. 基于随钻测量的岩体结构与力学参数表征研究进展. 金属矿山. 2023(05): 45-58 .
    15. 陈祖军,何明明,周佳佩,邓边员. 基于数字钻技术的岩石强度特性预测方法研究. 长沙理工大学学报(自然科学版). 2023(03): 91-101 .
    16. 王圆文,丘永富,杨天鸿,邓文学,李华,张紫瑞,刘洋. 基于钻孔数据库和RMR法的露天矿非均匀性岩体质量参数表征及应用. 金属矿山. 2023(06): 192-199 .
    17. 刘华吉,孙红林,张占荣,尤明龙,谭飞,李炜. 基于随钻参数的砂岩与砂质泥岩地层分界面智能识别. 隧道建设(中英文). 2023(S1): 304-312 .
    18. 程勇,王琛,刘夏临,刘继国,陈世纪,黄胜. 基于机器学习的隧道地质勘察岩性识别分析及应用研究. 隧道建设(中英文). 2023(09): 1549-1557 .
    19. 张晟斌,刘继国,刘夏临,舒恒,程勇,赵强,马保松. 一种基于水平定向钻的模型试验装置. 隧道建设(中英文). 2023(09): 1455-1462 .
    20. 乔梁,李晓昭,邓龙传,熊志勇,张弛. 基于砂浆钻进的随钻机械参数监测试验研究. 工程地质学报. 2023(06): 2020-2029 .
    21. 王少锋,吴毓萌,蔡鑫,周子龙. 基于随钻参数的岩石强度预测与可钻性识别(英文). Journal of Central South University. 2023(12): 4036-4051 .
    22. 岳中文,岳小磊,杨仁树,王煦,李为,戴诗清,李杨. 随钻岩性识别技术研究进展. 矿业科学学报. 2022(04): 389-402 .
    23. Haoteng Wang,Mingming He,Zhiqiang Zhang,Jiwei Zhu. Determination of the constant m_i in the Hoek-Brown criterion of rock based on drilling parameters. International Journal of Mining Science and Technology. 2022(04): 747-759 .
    24. 罗文超,王军伟. 基于钻进参数的围岩分类指标优化研究. 工程勘察. 2022(10): 19-23+30 .
    25. 徐振洋,吴怡璇,王雪松,刘鑫,郭连军,柴青平. 旋压钻进破岩的应力特征研究. 金属矿山. 2022(10): 24-29 .

    Other cited types(18)

Catalog

    Article views (355) PDF downloads (192) Cited by(43)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return