ZHANG Bo, YANG Wei-hao, WANG Bao-sheng. Elastoplastic design theory for ultra-deep frozen wall considering large deformation features[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1288-1295. DOI: 10.11779/CJGE201907013
    Citation: ZHANG Bo, YANG Wei-hao, WANG Bao-sheng. Elastoplastic design theory for ultra-deep frozen wall considering large deformation features[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1288-1295. DOI: 10.11779/CJGE201907013

    Elastoplastic design theory for ultra-deep frozen wall considering large deformation features

    More Information
    • Received Date: May 19, 2018
    • Published Date: July 24, 2019
    • The freezing method is a key sinking method used in deep aquifer. The frozen-wall design theory is a key technique for the freezing method. However, the previous design theories for a deep artificial frozen wall have neglected the influences of side-wall deformation on its sizes and locations. Thus, the associated designs tend to be unsafe and the earthwork excavations tend to be underestimated. In order to consider the influences of a large deformation, new solution formulas for excavation radius and outer radii before deformation occurs are deduced by finite strains, and a new design theory for frozen-wall thickness is established. The analytical results are compared with numerical ones by analyzing the effects of various parameters, such as the crustal stress, and the cohesion, internal friction angle, and elastic modulus of frozen soil, on the side-wall displacement and frozen-wall thickness. The results indicate that both the small deformation and large deformation problems can be solved by the new formulas, the theoretical formula neglecting elastic strains can be applied to large deformation with strain up to 0.15, and the new formulas can accurately calculate the amount of excavation earthwork, and provide a theoretical reference for the design of frozen wall in ultra-deep soil layers.
    • [1]
      翁家杰. 井巷特殊施工[M]. 北京: 煤炭工业出版社, 1991: 4-72.
      (WENG Jia-jie.Special construction engineering of mine shaft and drift [M]. Beijing: Coal Industry Press, 1991: 4-72. (in Chinese))
      [2]
      杨维好. 十年来中国冻结法凿井技术的发展与展望[C]//中国煤炭学会成立五十周年高层学术论坛. 北京, 2012: 1-7.
      (YANG Wei-hao.Development and prospect of freezing shaft sinking technology in China over the past decade[C]// High-level Academic Forum for the 50th Anniversary of China Coal Society, China Coal Society. Beijing, 2012: 1-7. (in Chinese))
      [3]
      杨维好, 杨志江, 柏东良. 基于与围岩相互作用的冻结壁弹塑性设计理论[J]. 岩土工程学报, 2013, 35(1): 175-180.
      (YANG Wei-hao, YANG Zhi-jiang, BAI Dong-liang.The elastic-plastic design theory of frozen soil wall based on the interaction between frozen wall and surrounding rock[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 175-180. (in Chinese))
      [4]
      杨维好, 杜子博, 杨志江, 等. 基于与围岩相互作用的冻结壁塑性设计理论[J]. 岩土工程学报, 2013, 35(10): 1857-1862.
      (YANG Wei-hao, DU Zibo, YANG Zhi-jiang.Plastic design theory of frozen soil wall based on interaction between frozen soil wall and surrounding rock[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1857-1862. (in Chinese))
      [5]
      VRAKAS A, ANAGNOSTOU G.A finite strain closed-form solution for the elastoplastic ground response curve in tunneling[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38: 1131-1148.
      [6]
      陈晓祥, 杜贝举, 王雷超, 等. 综放面动压回采巷道帮部大变形控制机理及应用[J]. 岩土工程学报, 2016, 38(3): 460-467.
      (CHEN Xiao-xiang, DU Bei-ju, WANG Lei-chao, et al.Control mechanism and application of large deformation of dynamic pressure roadway of fully mechanized top-coal caving face[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 460-467. (in Chinese))
      [7]
      CARTER J P, BOOKER J R, YEUNG S K.Cavity expansion in cohesive frictional soil[J]. Géotechnique, 1986, 36(3): 349-358.
      [8]
      DECTOURNAY E.Elastoplastic model of a deep tunnel for a rock with variable dilatancy[J]. Rock Mechanics and Rock Engineering, 1986, 19: 99-108.
      [9]
      YU H S, HOULSBY G T.Finite cavity expansion in dilatant soils: loading analysis[J]. Géotechnique, 1991, 41(2): 173-183.
      [10]
      YU H S, ROWE R K.Plasticity solutions for soil behavior around contracting cavities and tunnels[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1999, 23: 1245-1279.
      [11]
      YU H S, CARTER J P.Rigorous similarity solutions for cavity expansion in cohesive-frictional soils[J]. International Journal of Geomechanics, 2002, 2(2): 233-258.
      [12]
      ZHAO J D, WANG G.Unloading and reverse yielding of a finite cavity in a bounded cohesive-frictional medium[J]. Computers and Geotechnics, 2010, 37: 239-245.
      [13]
      COHEN T, DURBAN D.Fundamental solutions of cavitation in porous solids: a comparative study[J]. Acta Mechanica, 2013, 224: 1695-1707.
      [14]
      VRAKAS A, ANAGNOSTOU G.Finite strain elastoplastic solutions for the undrained ground response curve in tunneling[J] International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 39: 738-761.
      [15]
      张常光, 张成林, 周菲, 等. 圆形隧道弹塑性分析的强度理论效应研究[J]. 岩土工程学报, 2018, 40(8): 1449-1456.
      (ZHANG Chang-guang. ZHANG Cheng-lin, ZHOU Fei, et al.Effect of strength theory in elastic-plastic analysis of a circular tunnel[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1449-1456. (in Chinese))
      [16]
      CHADWICK P.The quasi-static expansion of a spherical cavity in metals and ideal soils[J]. Quarterly Journal of Mechanics and Applied Mathematics, 1959, 12: 52-71.
      [17]
      杜修力, 马超, 路德春. 正常固结黏土的三维弹塑性本构模型[J]. 岩土工程学报, 2015, 37(2): 235-241.
      (DU Xiu-li, MA Chao, LU De-chun.Three-dimensional elastoplastic constitutive model for normal consolidated clays[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 235-241. (in Chinese))
      [18]
      郭万里, 朱俊高, 彭文明. 粗粒土的剪胀方程及广义塑性本构模型研究[J]. 岩土工程学报, 2018, 40(6): 1103-1110.
      (GUO Wan-li, ZHU Jun-gao, PENG Wen-ming.Dilatancy equation and generalized plastic constitutive model for coarse-grained soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1103-1110. (in Chinese))
      [19]
      杨维好, 杨志江, 韩涛, 等. 基于与围岩相互作用的冻结壁弹性设计理论[J]. 岩土工程学报, 2012, 34(3): 516-519.
      (YANG Wei-hao, YANG Zhi-jiang, HAN Tao, et al.Elastic design theory of frozen soil wall based on interaction between frozen soil wall and surrounding rock[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(3): 516-519. (in Chinese))
    • Related Articles

      [1]CHEN Wensheng, LIU Cheng, XU Bin, YIN Pingbao. Torque sum method for slope stability analysis[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 645-651. DOI: 10.11779/CJGE20231182
      [2]Study on the net buoyancy dissipation characteristics of synchronous grouting in shield tunnels and its effect on segment floating[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240857
      [3]XUE Demin, LI Tianbin, ZHANG Shuai. Method for calculating landslide thrusts behind double-row piles based on displacement control[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1979-1986. DOI: 10.11779/CJGE20220687
      [4]MU Lin-long, WANG Le, HUANG Mao-song, HE Yan-cheng, KANG Jing-wen. Experimental study on influences of leakage of confined water on buoyancy of underground structures[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 769-774. DOI: 10.11779/CJGE201904022
      [5]ZHU Li-yuan, LI Zhong-hua, XU Lian-man. Measuring stress and strength of coal by drilling cutting torque method[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 2096-2102. DOI: 10.11779/CJGE201411016
      [6]NI Wei-jie, ZHU Bin, CHEN Ren-peng, ZHOU Jian, HUANG Bo. Tests and methods for buoyancy of pipelines in backfill soft clay[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 569-573. DOI: 10.11779/CJGE201403021
      [7]Bearing behaviors and nonlinear theory of pile groups subjected to torque[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(5).
      [8]Cutting torque during tunnelling process of earth pressure balance shield machine in homogeneous ground[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1).
      [9]MEI Guoxiong, SONG Linhui, ZAI Jinmin. Experimental study on reduction of groundwater buoyancy[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(9): 1476-1480.
    • Cited by

      Periodical cited type(8)

      1. 赵凯,黄昕,谢良甫,王建虎,晋智毅. 软土盾构掘进竖向姿态分析及控制策略研究. 矿业科学学报. 2025(02): 259-270 .
      2. 秦大伟. 上软下硬地层盾构施工设备选型与刀盘关键参数研究. 铁道建筑技术. 2024(02): 59-63 .
      3. 李玉梅,段浚龙,贾文宪,兰浩,钟一夫. 大直径泥水盾构刀盘扭矩和推力分析与计算. 建筑机械化. 2024(08): 42-46 .
      4. 邓立营,王小永,徐飞,谢宝玲,吴昊. 超大直径土压盾构刀盘载荷工况分析与结构优化. 机械设计. 2023(05): 70-77 .
      5. 王伯芝,陈文明,黄永亮,丁爽,谢浩,胡婧,刘学增. 基于集成Dropout-DNN模型的盾构掘进速度预测方法. 科学技术与工程. 2023(17): 7558-7565 .
      6. 陈明江,黄政,王清扬,林赉贶. 盾构刀盘仿真分析中掘进载荷施加方法研究. 建筑机械化. 2023(08): 39-42 .
      7. 张瑞鑫. 土压平衡盾构机实时判别土仓内渣土堵塞的方法研究. 铁道建筑技术. 2022(11): 38-42 .
      8. 李雪,吴九七,郭庆飞,向乔,耿凤娟. 基于量纲理论的盾构掘进总推力计算模型. 地下空间与工程学报. 2022(S2): 573-577 .

      Other cited types(4)

    Catalog

      Article views (309) PDF downloads (148) Cited by(12)
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return