长锚杆/锚索改善深埋大跨度隧道初支结构受力试验研究

    周阳, 来弘鹏, 王兴广, 孔军, 李志磊, 洪秋阳

    周阳, 来弘鹏, 王兴广, 孔军, 李志磊, 洪秋阳. 长锚杆/锚索改善深埋大跨度隧道初支结构受力试验研究[J]. 岩土工程学报, 2024, 46(4): 853-863. DOI: 10.11779/CJGE20221533
    引用本文: 周阳, 来弘鹏, 王兴广, 孔军, 李志磊, 洪秋阳. 长锚杆/锚索改善深埋大跨度隧道初支结构受力试验研究[J]. 岩土工程学报, 2024, 46(4): 853-863. DOI: 10.11779/CJGE20221533
    ZHOU Yang, LAI Hongpeng, WANG Xingguang, KONG Jun, LI Zhilei, HONG Qiuyang. Experimental study on improving mechanical characteristics of initial support structure of deep buried large-span tunnels with long bolts or cables[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 853-863. DOI: 10.11779/CJGE20221533
    Citation: ZHOU Yang, LAI Hongpeng, WANG Xingguang, KONG Jun, LI Zhilei, HONG Qiuyang. Experimental study on improving mechanical characteristics of initial support structure of deep buried large-span tunnels with long bolts or cables[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 853-863. DOI: 10.11779/CJGE20221533

    长锚杆/锚索改善深埋大跨度隧道初支结构受力试验研究  English Version

    基金项目: 

    国家自然科学基金面上项目 51978064

    山东省交通运输厅科技项目 2021B69

    国家自然科学基金青年基金项目 51908051

    中国博士后科学基金项目 2021M700534

    详细信息
      作者简介:

      周阳(1996—),男,河北涞水人,博士研究生,主要从事隧道及地下工程等领域的科研工作。E-mail: youngzhou@chd.edu.cn

      通讯作者:

      来弘鹏, E-mail: laihp168@chd.edu.cn

    • 中图分类号: TU456

    Experimental study on improving mechanical characteristics of initial support structure of deep buried large-span tunnels with long bolts or cables

    • 摘要: 针对深埋大跨度软岩隧道拱脚及拱顶处初支开裂、钢架变形过大问题,提出了局部增设长锚杆或锚索的支护技术,以实现对该类隧道初支结构受力的调节改善。基于课题组自主研发的隧道结构性能测试平台,对比分析了同等围岩荷载作用下系统锚杆支护与多类长锚杆/锚索支护方案的初期支护结构受力变形特征,研究了不同环向间距与布设范围的长锚杆/锚索支护效果。研究结果表明:①常规支护时,大跨度隧道初期支护整体呈压扁趋势,拱顶内侧与拱脚外侧承受结构最大弯矩而最先开裂,仰拱内侧拉裂后模型加速变形进而引起结构整体失稳破坏;②4种增设长锚杆或锚索支护方案下,初支拱顶处结构安全系数分别为常规支护体系的4.59,2.12,1.96,1.80倍,拱脚处结构安全系数分别为常规支护的5.23,2.80,2.34,2.37倍;③在拱部120°范围以2 m环向间距布设长锚杆对初支结构内力改善效果最佳,支护点轴向强拉力产生的局部负弯矩组合效应抵消了拱顶处较大正弯矩;④不同位置长锚杆/锚索支护力整体呈从拱顶处至拱肩侧先减小后增大的规律。
      Abstract: To address the issues of the initial cracking at the arch foot and crown and the excessive deformation of steel frames in deep-buried, large-span soft rock tunnels, a support technology involving localized addition of long anchor bolts or cables is proposed to adjust and improve the structural stress. Based on the tunnel structural performance testing platform independently developed by the authors, the stress and deformation characteristics of the initial support structures under the same surrounding rock loads are compared and analyzed between the system anchor support and multiple types of long anchor bolts or anchor cables deployment schemes. The effects of long bolts/cables support with different circumferential spacings and layout ranges are studied. The research results show that: (1) Under the conventional support, the initial support of a large-span tunnel under surrounding rock loads tends to flatten, with the inner side of the arch crown and the outer side of the arch foot bearing the maximum bending moment of the structures being the first to crack. After the inner side of the inverted arch cracks, the model accelerates deformation, leading to the overall instability and damage of the structures. (2) Under the four conditions of adding long anchor bolts or anchor cables for support, the structural safety factors at the initial support arch crown are 4.59 times, 2.12 times, 1.96 times and 1.80 times those of the conventional support system, and the structural safety factors at the arch toe are 5.23 times, 2.80 times, 2.34 times and 2.37 times those of the conventional support system, respectively. (3) Placing long anchor bolts at a circumferential distance of 2 m within 120 ° of the arch has the best effects on improving the internal force of the initially supported structures. The combined effects of local negative bending moments generated by the strong axial tension at the support points offset the larger positive bending moments at the arch crown. (4) The overall supporting force of long anchor bolts and anchor cables decreases first and then increases from the arch crown to the arch shoulder side.
    • 图  1   长短锚杆联合支护作用机理

      Figure  1.   Mechanism of combined support of long and short bolts

      图  2   隧道结构力学试验平台

      Figure  2.   Tunnel structural mechanics testing platform

      图  3   试验装置设计平面图

      Figure  3.   Design plan of test devices

      图  4   弧形钢板及螺栓

      Figure  4.   Arc steel plates and bolts

      图  5   隧道结构典型横断面

      Figure  5.   Typical cross section of tunnel structures

      图  6   施工阶段初期支护典型破坏形式

      Figure  6.   Typical failure modes of initial supports at construction stage

      图  7   试验装置与石膏模型

      Figure  7.   Test devices and gypsum model

      图  8   大跨度隧道围岩压力归一化结果

      Figure  8.   Normalized results of pressures on surrounding rock

      图  9   应变、位移与压力监测点布置

      Figure  9.   Arrangement of strain, displacement and pressure monitoring points

      图  10   裂缝展布图

      Figure  10.   Distribution of cracks

      图  11   应变及模型开裂情况

      Figure  11.   Change of strain and model cracking

      图  12   原型初支结构内力

      Figure  12.   Internal forces of prototype initial support

      图  13   监测点荷载-位移变化曲线

      Figure  13.   Change curves of load and displacement at monitoring points

      图  14   不同长锚杆环向间距结构内力

      Figure  14.   Internal forces of structures with different circumferential spacings of long anchors

      图  15   监测点变形量

      Figure  15.   Deformations at monitoring points

      图  16   原型长锚杆支护力

      Figure  16.   Supporting forces of prototype long anchors

      图  17   原型初支结构内力

      Figure  17.   Internal forces of prototype initial supports

      图  18   结构变形与原型长锚杆支护力

      Figure  18.   Structural deformations and supporting forces of prototype long anchors

      图  19   原型初支结构内力

      Figure  19.   Internal forces of prototype initial supports

      图  20   结构变形与原型长锚杆支护力

      Figure  20.   Structural deformations and supporting forces of prototype long anchors

      表  1   模型相似常数

      Table  1   Model similarity constants

      物理量 相似关系 相似比
      长度L CL = 16 16
      重度γ Cγ = 1 1
      面荷载q Cq = CLCγ 16
      弹性模量E CE = Cq 16
      泊松比μ Cμ = 1 1
      应力σ Cσ = CE 16
      应变ε Cε = 1 1
      强度R CR = CL Cγ 16
      N CN=CσCL2 1∶4096
      弯矩M CM=CσCL3 1∶65536
      下载: 导出CSV

      表  2   大跨度隧道围岩压力统计数据

      Table  2   Statistical data of pressures on surrounding rock of long-span tunnel

      隧道名称 断面信息跨度/高度/m 围岩压力/kPa
      拱顶 左拱肩 右拱肩 左边墙 右边墙 左拱脚 右拱脚 仰拱左 仰拱右 仰拱中
      九州隧道[11] 15.6/11.2 226.7 110.9 223.7 233.4 204.9
      黄家峪隧道[11] 16.0/13.0 104.7 118.2 150.6 117.1 204.9
      阳宗隧道[11] 16.0/12.0 145.4 135.1 98.4 54.5 36.9
      天恒山隧道[11] 16.8/12.0 129.2 64.2 183.8 129.7 49.5
      勤丰隧道[14] 17.2/11.7 59.4 78.5 62.8 52.8 73.6 37.3 39.3
      大东山隧道[13](左线) 18.2/10.1 260.0 150.0 190.0 50.0 70.0
      大东山隧道[13](右线) 18.2/10.1 240.0 200.0 190.0 90.0 70.0
      山冲箐隧道[11] 18.5/11.0 420.0 250.0 150.0 210.0 90.0
      盘顶山隧道(K69+335) 18.6/12.6 233.6 147.3 115.3 89.7 93.9 139.4 128.2 65.1 89.0 103.1
      盘顶山隧道(K69+341) 18.6/12.6 227.1 121.4 134.2 114.7 119.3 131.7 156.3 73.0 71.7 105.8
      港沟隧道[11] 20.0/13.1 687.3 447.3 158.2 471.8 196.0
      老虎山隧道[12] 20.0/13.4 90.0 9.0 15.0 14.0 45.0
      戴云山隧道[11] 21.0/15.8 240.0 223.7 216.8 52.3 204.9
      樵岭前隧道[12] 21.0/14.3 211.0 40.0 25.0 16.0 13.0
      乐瞳隧道[12] 21.5/14.3 19.0 20.0 22.0 13.0
      下载: 导出CSV

      表  3   试验方案设计

      Table  3   Design of test conditions

      方案 环向间距/ m 布设范围
      方案1 2 拱部120°
      方案2 4 拱部120°
      方案3 2 拱部60°
      方案4 2 两侧拱肩各30°
      下载: 导出CSV

      表  4   不同方案支护效果对比

      Table  4   Comparison of support effects of different schemes

      工况 不利位置 弯矩/(kN·m) 轴力/kN 混凝土受压强度安全系数 长锚杆支护力/kN 拱顶沉降量/mm
      均值 极差
      原设计 拱顶 100.05 -1816.12 1.35 50.56
      拱脚 -145.14 -2671.10 0.92
      方案1 拱顶 -23.45 -444.23 6.20 75.07 28.96 18.88
      拱脚 -30.48 -507.94 4.81
      方案2 拱顶 -43.27 -1052.24 2.86 139.33 45.12 23.20
      拱脚 -60.68 -945.80 2.58
      方案3 拱顶 -34.71 -1138.42 2.64 208.67 88.16 19.68
      拱脚 -63.48 -1054.75 2.15
      方案4 拱顶 41.72 -1236.01 2.43 188.91 26.56 27.20
      拱脚 -67.03 -1119.81 2.18
      下载: 导出CSV
    • [1]

      LIU W, CHEN J, LUO Y, et al. Deformation behaviors and mechanical mechanisms of double primary linings for large-span tunnels in squeezing rock: a case study[J]. Rock Mechanics and Rock Engineering, 2021, 54(5): 2291-2310. doi: 10.1007/s00603-021-02402-5

      [2]

      LUO Y, CHEN J, SHI Z, et al. Mechanical characteristics of primary support of large span loess highway tunnel: a case study in Shaanxi Province, Loess Plateau, NW China primary[J]. Tunnelling and Underground Space Technology, 2020, 104: 103532. doi: 10.1016/j.tust.2020.103532

      [3] 王鑫, 张庆贺, 刘小兵. 系统锚杆在大跨度连拱隧道中的作用性探讨[J]. 地下空间与工程学报, 2009, 5(增刊2): 1488-1492. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2009S2017.htm

      WANG Xin, ZHANG Qinghe, LIU Xiaobing. The effects of systematic bolts in large span and double-arch tunnel[J]. Chinese Journal of Underground Space and Engineering, 2009, 5(S2): 1488-1492. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2009S2017.htm

      [4] 肖丛苗, 张顶立, 朱焕春, 等. 大跨度地下工程支护结构研究[J]. 岩土力学, 2015, 36(增刊2): 513-518 524, 524. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S2072.htm

      XIAO Congmiao, ZHANG Dingli, ZHU Huanchun, et al. Study of large-span underground engineering supporting structure[J]. Rock and Soil Mechanics, 2015, 36(S2): 513-518 524, 524. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S2072.htm

      [5] 付强, 明世祥. 锚杆(索)减跨机理及在深埋大跨度巷道中的应用[J]. 中国矿业, 2007, 16(5): 64-65, 68. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA200705020.htm

      FU Qiang, MING Shixiang. The reduced-span mechanism of rock bolt and application in the deep long-span roadway[J]. China Mining Magazine, 2007, 16(5): 64-65, 68. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA200705020.htm

      [6] 刘辉, 宋仪. 基于围岩自承载理论的超大跨硐室设计方法[J]. 铁道工程学报, 2021, 38(2): 1-7, 46. doi: 10.3969/j.issn.1006-2106.2021.02.001

      LIU Hui, SONG Yi. Design method of super large span chamber based on self-bearing theory of surrounding rock[J]. Journal of Railway Engineering Society, 2021, 38(2): 1-7, 46. (in Chinese) doi: 10.3969/j.issn.1006-2106.2021.02.001

      [7] 罗基伟, 张顶立, 房倩, 等. 超大跨度隧道预应力锚杆—锚索协同支护机理[J]. 中国铁道科学, 2020, 41(5): 71-82. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202005009.htm

      LUO Jiwei, ZHANG Dingli, FANG Qian, et al. Combined support mechanism of pretensioned rock bolt and anchor cable for super-large-span tunnel[J]. China Railway Science, 2020, 41(5): 71-82. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202005009.htm

      [8] 孙振宇, 张顶立, 刘道平, 等. 锚固体系作用下隧道围岩力学响应的全过程解析[J]. 工程力学, 2022, 39(7): 170-182. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202207017.htm

      SUN Zhenyu, ZHANG Dingli, LIU Daoping, et al. Analysis of the whole-process mechanical response of tunnel surrounding rock under the effect of anchorage system[J]. Engineering Mechanics, 2022, 39(7): 170-182. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202207017.htm

      [9]

      SONG W, LAI H, LIU Y, et al. Field and laboratory study of cracking and safety of secondary lining for an existing highway tunnel in loess ground[J]. Tunnelling and Underground Space Technology, 2019, 88: 35-46. doi: 10.1016/j.tust.2019.02.018

      [10] 来弘鹏, 林永贵, 谢永利, 等. 支护时机对软弱围岩公路隧道力学特征影响的试验研究[J]. 岩土工程学报, 2009, 31(3): 390-395. http://cge.nhri.cn/cn/article/id/13181

      LAI Hongpeng, LIN Yonggui, XIE Yongli, et al. Influence of supporting opportunity on stress characteristics of soft-weak surrounding rocks in highway tunnels[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(3): 390-395. (in Chinese) http://cge.nhri.cn/cn/article/id/13181

      [11] 刘道平. 超大断面隧道围岩施工力学响应特征及控制[D]. 北京: 北京交通大学, 2021.

      LIU Daoping. Characteristics and Control of Construction Mechanical Response of Surrounding Rock of Super Large Section Tunnel[D]. Beijing: Beijing Jiaotong University, 2021. (in Chinese)

      [12] 罗彦斌, 董方方, 王传武, 等. 考虑分部开挖的超大跨度公路隧道围岩压力计算方法研究[J]. 岩石力学与工程学报, 2022, 41(8): 1637-1646. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202208010.htm

      LUO Yanbin, DONG Fangfang, WANG Chuanwu, et al. A surrounding rock pressure calculation method for super-large-span highway tunnels considering sequential excavation[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(8): 1637-1646. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202208010.htm

      [13] 张铁柱. 四车道特大断面小净距公路隧道力学响应分析[J]. 土木工程学报, 2015, 48(增刊1): 302-305. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2015S1052.htm

      ZHANG Tiezhu. Analysis of mechanical response of four-lane small clear spacing highway tunnel with super-large cross-section[J]. China Civil Engineering Journal, 2015, 48(S1): 302-305. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2015S1052.htm

      [14] 赵亚龙. 大跨度扁坦隧道施工力学三维数值模拟及现场监测分析[J]. 土工基础, 2020, 34(2): 241-246. https://www.cnki.com.cn/Article/CJFDTOTAL-TGJC202002035.htm

      ZHAO Yalong. 3D numerical simulation and field monitoring of the excavation of a large-size flat tunnel[J]. Soil Engineering and Foundation, 2020, 34(2): 241-246. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TGJC202002035.htm

      [15] 薛亚东, 黄宏伟. 锚索锚固力影响因素的试验分析研究[J]. 岩土力学, 2006, 27(9): 1523-1526. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200609017.htm

      XUE Yadong, HUANG Hongwei. Experimental study on affect factors on anchoring force of cable bolts[J]. Rock and Soil Mechanics, 2006, 27(9): 1523-1526. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200609017.htm

      [16] 郭小红, 王梦恕. 隧道支护结构中锚杆的功效分析[J]. 岩土力学, 2007, 28(10): 2234-2239. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200710043.htm

      GUO Xiaohong, WANG Mengshu. Analysis of efficacy of rock bolt for tunnel support stucture[J]. Rock and Soil Mechanics, 2007, 28(10): 2234-2239. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200710043.htm

      [17] 韩侃, 李登科, 吴冠仲. 预应力锚索锚固力拉拔试验分析[J]. 岩土工程学报, 2011, 33(增刊1): 392-394. http://cge.nhri.cn/cn/article/id/14289

      HAN Kan, LI Dengke, WU Guanzhong. Pull-out tests on anchoring force of prestressed anchor cables[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(S1): 392-394. (in Chinese) http://cge.nhri.cn/cn/article/id/14289

      [18] 公路隧道设计细则: JTG/T D70—2010[S]. 北京: 人民交通出版社, 2010.

      Guidelines for Design of Highway Tunnel: JTG/T D70—2010[S]. Beijing: China Communications Press, 2010. (in Chinese)

    • 期刊类型引用(3)

      1. 元志镕,蒋水华,常志璐,向晖,刘玉伟,黄劲松. 考虑初始含水率非均匀分布及孔隙水重分布的边坡可靠度分析. 岩土力学. 2025(03): 1001-1012 . 百度学术
      2. 谌柳谦. 紧邻深基坑的历史保护建筑保护措施关键技术研究. 建筑施工. 2024(01): 81-84 . 百度学术
      3. 高山,周成,周泽昶,罗祺,范丽娟,廖烟开. 石漠化边坡板槽降雨利用室内试验及工程数值模拟. 水利水运工程学报. 2024(06): 126-138 . 百度学术

      其他类型引用(5)

    图(20)  /  表(4)
    计量
    • 文章访问数:  405
    • HTML全文浏览量:  38
    • PDF下载量:  123
    • 被引次数: 8
    出版历程
    • 收稿日期:  2022-12-11
    • 网络出版日期:  2024-04-09
    • 刊出日期:  2024-03-31

    目录

      /

      返回文章
      返回