小转弯半径曲线盾构隧道开挖引发地表沉降计算

    邓皇适, 傅鹤林, 史越

    邓皇适, 傅鹤林, 史越. 小转弯半径曲线盾构隧道开挖引发地表沉降计算[J]. 岩土工程学报, 2021, 43(1): 165-173. DOI: 10.11779/CJGE202101019
    引用本文: 邓皇适, 傅鹤林, 史越. 小转弯半径曲线盾构隧道开挖引发地表沉降计算[J]. 岩土工程学报, 2021, 43(1): 165-173. DOI: 10.11779/CJGE202101019
    DENG Huang-shi, FU He-lin, SHI Yue. Calculation of surface settlement caused by excavation of shield tunnels with small turning radius[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 165-173. DOI: 10.11779/CJGE202101019
    Citation: DENG Huang-shi, FU He-lin, SHI Yue. Calculation of surface settlement caused by excavation of shield tunnels with small turning radius[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 165-173. DOI: 10.11779/CJGE202101019

    小转弯半径曲线盾构隧道开挖引发地表沉降计算  English Version

    基金项目: 

    国家自然科学基金项目 51538009

    详细信息
      作者简介:

      邓皇适(1996— ),男,硕士,主要从事隧道及地下工程理论计算及数值模拟研究工作。E-mail: tunneldhs@csu.edu.cn

      通讯作者:

      傅鹤林, E-mail: fu.h.l@csu.edu.cn

    • 中图分类号: TU43

    Calculation of surface settlement caused by excavation of shield tunnels with small turning radius

    • 摘要: 小转弯半径曲线盾构隧道施工引发的地表沉降变形规律极为复杂,但相应的变形预测解析公式仍未明确。依据前人研究成果,构建曲线段盾构隧道施工的地层损失模型,基于镜像法及Mindlin解,推导曲线盾构隧道开挖引发地表沉降的计算公式,并将其应用于工程实例计算,最后分析曲线盾构隧道施工引发地表变形规律及其影响因素。研究表明:构建的小转弯半径曲线段地层损失模型合理,推导所得公式适用于实际工程计算;地表纵向沉降在靠近刀盘3倍洞径范围内变化极大,刀盘前方3倍洞径范围内地表会产生轻微隆起,刀盘后方3~4倍洞径处出现最大沉降;地表横向沉降槽为非对称分布,最大沉降位置位于弯道内侧,距刀盘中心线约1倍洞径;地层损失引起的地表横向沉降大小主要受转弯半径及盾壳长度影响,地表横向沉降槽偏移程度主要由刀盘直径大小决定。
      Abstract: The settlement deformation caused by the construction of shield tunnels with small turning radius curve is very complicated, but the corresponding analytical method of deformation prediction is still not clear. According to the results of the previous researches, the formation loss model for construction of shield tunnels with curved section is established. Based on the mirror image method and the Mindlin solution, the formula for calculating the surface settlement caused by the excavation of shield tunnels with curved section is derived and applied to the calculation of engineering examples. Finally, the surface deformation laws and influencing factors of construction of shield tunnels with curved section are analyzed. The results show that the model for formation loss of curved section is reasonable and the derived formula is applicable to practical projects. The longitudinal surface settlement varies greatly in the range of 3 times the diameter of the hole close to the cutter head, a slight bulge on the surface within 3 times the hole diameter in front of the cutter head, and the maximum settlement position is located at 3 ~ 4 times the hole diameter behind the cutter head. The surface transverse settlement groove is asymmetrically distributed, and the maximum settlement position is at the inner side of the bend, about 1 time the hole diameter from the center line of the cutter disc. The surface settlement caused by formation loss is mainly affected by the turning radius and the length of the shield and shell, and the displacement degree of the surface transverse settlement groove is mainly affected by the diameter of the cutter disc.
    • 图  1   曲线段地层损失模型

      Figure  1.   Formation loss model for curved segment

      图  2   地层损失截面

      Figure  2.   Cross section of formation loss

      图  3   第一部分地层损失计算模型

      Figure  3.   Model for formation loss of first part

      图  4   计算图示

      Figure  4.   Diagram of calculation

      图  5   开挖面附加推力计算图示

      Figure  5.   Calculation of additional thrust on excavation surface

      图  6   附加注浆压力计算图示

      Figure  6.   Calculation of additional grouting pressure

      图  7   盾壳摩阻力计算图示

      Figure  7.   Calculation of friction resistance of shield shell

      图  8   曲线盾构隧道周边建筑环境

      Figure  8.   Construction environment around curved shield tunnel

      图  9   地层损失计算对比

      Figure  9.   Calculation and comparison of formation loss

      图  10   地表沉降曲面

      Figure  10.   Surface subsidence surface

      图  11   纵向地表沉降曲线

      Figure  11.   Curves of vertical surface subsidence

      图  12   y=0 m处(开挖面)横向地表沉降曲线

      Figure  12.   Curves of horizontal surface subsidence at y=0 m

      图  13   y=10 m处(开挖面前方)横向地表沉降曲线

      Figure  13.   Curves of horizontal surface subsidence at y=10 m

      图  14   不同转弯半径横向地表沉降曲线 (y=0 m)

      Figure  14.   Curves of lateral surface subsidence under different turning radii

      图  15   不同刀盘直径横向地表沉降曲线 (y=0 m)

      Figure  15.   Curves of transverse surface settlement under different blade diameters

      图  16   不同盾壳长度横向地表沉降曲线 (y=0 m)

      Figure  16.   Curves of horizontal surface settlement of different shield shell lengths

      表  1   计算参数表

      Table  1   Calculation parameters

      转弯半径R0/m刀盘直径D/m盾壳长度L/m内侧超挖量σ/mm泊松比ν 摩阻力差异系数n刀盘埋深H/m
      1504.47.343.80.280.918.0
      剪切模量G/MPa附加推力q/kPa附加注浆压力p/kPa盾壳摩阻力f/kPa土体损失参数g/mm推力差异系数m单环管片长度a/m
      22120 ± 1520100 ± 10441.11.2
      下载: 导出CSV
    • [1] 魏纲, 张世民, 齐静静, 等. 盾构隧道施工引起的地面变形计算方法研究[J]. 岩石力学与工程学报, 2006, 25(增刊1): 3317-3323. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S1111.htm

      WEI Gang, ZHANG Shi-min, QI Jing-jing, et al. Study on calculation method of ground deformation induced by tunnel construction[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(S1): 3317-3323. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S1111.htm

      [2]

      PECK R B. Deep excavation and tunneling in soft ground[C]//Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, 1969, Mexico: 225-281.

      [3] 马险峰, 王俊淞, 李削云, 等. 盾构隧道引起地层损失和地表沉降的离心模型试验研究[J]. 岩土工程学报, 2012, 34(5): 942-947. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201205027.htm

      MA Xian-feng, WANG Jun-song, LI Xiao-yun, et al. Centrifuge modeling of ground loss and settlement caused by shield tunnelling in soft ground[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(5): 942-947. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201205027.htm

      [4] 张洋, 刘陕南, 吴俊, 等. 盾构隧道掘进时地层参数变化对地表沉降的敏感性研究[J]. 现代隧道技术, 2019, 56(4): 127-134. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201904021.htm

      ZHANG Yang, LIU Shan-nan, WU Jun, et al. Sensitivity and its impact of strata parameters on ground surface settlements during shield tunnelling[J]. Modern Tunnelling Technology, 2019, 56(4): 127-134. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201904021.htm

      [5] 张明聚, 张振波, 陈锋. 高压富水碎裂状岩层小半径曲线盾构隧道施工技术[J]. 现代隧道技术, 2018, 55(6): 197-203, 209. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201806030.htm

      ZHANG Ming-ju, ZHANG Zhen-bo, CHEN Feng. Construction techniques for the small-radius curved shield tunnels in water-rich fractured stratum with high pressure[J]. Modern Tunnelling Technology, 2018, 55(6): 197-203, 209. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201806030.htm

      [6]

      ZHANG Ming-ju, LI Shao-hua, LI Peng-fei. Numerical analysis of ground displacement and segmental stress and influence of yaw excavation loadings for a curved shield tunnel[J]. Computers and Geotechnics, 2020, 118: 103325. doi: 10.1016/j.compgeo.2019.103325

      [7] 张雪辉, 陈吉祥, 白云, 等. 类矩形土压平衡盾构施工引起的地表变形[J]. 浙江大学学报(工学版), 2018, 52(2): 317-324. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201802014.htm

      ZHANG Xue-hui, CHEN Ji-xiang, BAI Yun, et al. Ground surface deformation induced by quasi-rectangle EPB shield tunneling[J]. Journal of Zhejiang University (Engineering Science), 2018, 52(2): 317-324. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201802014.htm

      [8] 吴昌胜, 朱志铎, 宋世攻, 等.软土地层大直径泥水盾构掘进引起的地面变形分析[J]. 岩土工程学报, 2019, 41(增刊1): 169-172. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S1044.htm

      WU Chang-sheng, ZHU Zhi-duo, SONG Shi-gong, et al. Ground settlement caused by large-diameter slurry shield during tunnel construction in soft soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 169-172. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S1044.htm

      [9] 孙捷城, 路林海, 王国富, 等. 小半径曲线盾构隧道掘进施工地表变形计算[J]. 中国铁道科学, 2019, 40(5): 63-72. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201905010.htm

      SUN Jie-cheng, LU Lin-hai, WANG Guo-fu, et al. Calculation method of surface deformation induced by small radius curve shield tunneling construction[J]. China Railway Science, 2019, 40(5): 63-72. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201905010.htm

      [10] 郝润霞. 软土地区曲线段盾构隧道超挖量与注浆量分析[J]. 地下空间与工程学报, 2013, 9(5): 1132-1136. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201305031.htm

      HAO Run-xia. Analysis of over-excavation volume and synchronous grouting volume for the shield tunnel at curve section of soft soil area[J]. Chinese Journal of Underground Space and Engineering, 2013, 9(5): 1132-1136. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201305031.htm

      [11] 陈剑, 李智明. 急曲线隧道盾构超挖量及铰接角的理论算法[J]. 中国公路学报, 2017, 30(8): 66-73. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201708007.htm

      CHEN Jian, LI Zhi-ming. Theoretical algorithm for over-excavated volume and articulation angle during shield tunneling along sharp curves[J]. China Journal of Highway and Transport, 2017, 30(8): 66-73. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201708007.htm

      [12]

      SAGASETA C. Analysis of undraind soil deformation due to ground loss[J]. Géotechnique, 1987, 37(3): 301-320.

      [13] 姜忻良, 赵志民. 镜像法在隧道施工土体位移计算中的应用[J]. 哈尔滨工业大学学报, 2005(6): 801-803. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX200506024.htm

      JIANG Xin-liang, ZHAO Zhi-min. Application of image method in calculation of tunneling-induced soil displacement[J]. Journal of Harbin Institute of Technology, 2005(6): 801-803. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX200506024.htm

      [14]

      MINDLIN R D. Force at a point in the interior of a semi-infinite solid[J]. Physics, 1936, 7(5): 195-202.

      [15] 梁荣柱, 夏唐代, 林存刚, 等. 盾构推进引起地表变形及深层土体水平位移分析[J]. 岩石力学与工程学报, 2015, 34(3): 583-593. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201503017.htm

      LIANG Rong-zhu, XIA Tang-dai, LIN Cun-gang, et al. Analysis of ground surface displacement and horizontal displacement of deep soil induced by shield advance[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(3): 583-593. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201503017.htm

      [16] 魏纲, 周洋, 魏新江. 盾构隧道施工引起的工后地面沉降研究[J]. 岩石力学与工程学报, 2013, 32(增刊1): 2891-2896. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S1040.htm

      WEI Gang, ZHOU Yang, WEI Xin-jiang. Research on post-construction surface settlement caused by shield tunneling[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S1): 2891-2896. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S1040.htm

    图(16)  /  表(1)
    计量
    • 文章访问数:  340
    • HTML全文浏览量:  37
    • PDF下载量:  257
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-06-14
    • 网络出版日期:  2022-12-04
    • 刊出日期:  2020-12-31

    目录

      /

      返回文章
      返回