• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG De-yin, TANG Chao-sheng, LI Jian, LIU Bao-sheng, TANG Wei, ZHU Kun. Shear strength characteristics of fiber-reinforced unsaturated cohesive soils[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1933-1940.
Citation: WANG De-yin, TANG Chao-sheng, LI Jian, LIU Bao-sheng, TANG Wei, ZHU Kun. Shear strength characteristics of fiber-reinforced unsaturated cohesive soils[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1933-1940.

Shear strength characteristics of fiber-reinforced unsaturated cohesive soils

More Information
  • Received Date: April 27, 2013
  • Published Date: October 19, 2013
  • Fiber-reinforcement is a newly developed soil improvement technology. Better understanding the mechanical behaviors of fiber-reinforced soils is significant for evaluating the stability of the relevant earth structures and extending the application of this technology in engineering. This investigation aims to study the shear strength characteristics of fiber-reinforced unsaturated cohesive soils. Polypropylene fiber is used as the reinforcement material. A series of direct shear tests are performed under controlled water content and dry density conditions. With the application of scanning electron microscope (SEM), the fiber reinforcement mechanisms are discussed, and the obtained macro behaviors are interpreted from micro level. The shear test results show that the inclusion of fiber in soils can significantly enhance the shear strength of soils, which increases with increasing fiber content. The fiber reinforcement benefit on cohesion force is more evident than that on internal friction angle. The shear strength decreases with the increasing water content and increases with the increasing dry density. Moreover, the fiber reinforcement contribution on strength is more pronounced under relative low water content and high dry density conditions, where the fiber reinforcement benefit can be motivated effectively. It is also found that the fiber reinforcement can increase the strain at failure and reduce the peak strength loss after failure and therefore improve the ductility of soil specimens. Based on the SEM analysis, it can be concluded that the 1D reinforcing effect of a single fiber and the 3D reinforcing effect of fiber mesh are the dominant mechanisms of fiber-reinforced soils, which are conditioned by the interfacial mechanical interactions between fiber and soil particles. The SEM images also indicate that fibers on the shear surface may be either pulled out or broken during shear.
  • [1]
    陈 轮, 李广信. 纤维加筋粘性土的抗拉和抗裂性能研究[J]. 地基处理, 1992, 3(2): 25-31. (CHEN Lun, LI Guang-xin. Tensile strength and crack resistance of fiber reinforced cohesive soil[J]. Ground Improvement, 1992, 3(2): 25-31. (in Chinese))
    [2]
    李广信, 陈 轮, 郑继勤, 等. 纤维加筋黏性土的试验研究[J]. 水利学报, 1995(6): 31-36. (LI Guang-xin, CHEN Lun, ZHENG Ji-qin, et al. Experimental study on fiber-reinforced cohesive soil[J]. Journal of Hydraulic Engineering, 1995(6): 31-36. (in Chinese))
    [3]
    介玉新, 李广信, 陈 轮. 纤维加筋土和素土边坡的离心模型试验研究[J]. 岩土工程学报, 1998, 20(4): 12-15. (JIE Yu-xin, LI Guang-xin, CHEN Lun. Study on centrifugal model tests on texile and cohesive soil slopes[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(4): 12-15. (in Chinese))
    [4]
    张小江, 周克骥, 周景星. 纤维加筋土的动力特性试验研究[J]. 岩土工程学报, 1998, 20(3): 45-49. (ZHANG Xiao-jiang,ZHOU Ke-ji,ZHOU Jing-xing. Experimental study on dynamic properties of cohesive soil reinforced with fibres[J]. Chinese Journal of Geotechnical Engineering,1998, 20(3): 45-49. (in Chinese))
    [5]
    TANG C, SHI B, GAO W, CHEN F, CAI Y. Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil[J]. Geotextiles and Geomembranes, 2007, 25(3): 194-202.
    [6]
    唐朝生, 施 斌, 高 玮, 等. 纤维加筋土中单根纤维的拉拔试验及临界加筋长度的确定[J]. 岩土力学, 2009, 30(8): 2225-2230. (TANG Chao-sheng, SHI Bin, GAO Wei, et al. Single fiber pull-out test and the determination of critical fiber reinforcement length for fiber reinforced soil[J]. Rock and Soil Mechanics, 2009, 30(8): 2225-2230. (in Chinese))
    [7]
    施利国, 张孟喜, 曹 鹏. 聚丙烯纤维加筋灰土的三轴强度特性[J]. 岩土力学, 2011, 32(9): 2721-2728. (SHI Li-guo, ZHANG Meng-xi, CAO Peng. Triaxial shear strength characteristics of lime-soil reinforced with polypropylene fiber inclusions[J]. Rock and Soil Mechanics, 2011, 32(9): 2721-2728. (in Chinese))
    [8]
    雷胜友, 丁万涛. 加筋纤维抑制膨胀土膨胀性的试验[J]. 岩土工程学报, 2005, 27(4): 482-485. (LEI Sheng-you, DING Wan-tao. Experimental investigation on restraining the swell of expansive soil with fibre-reinforcement[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(4): 482-485. (in Chinese))
    [9]
    YETIMOGLU T, SALBA O. A study on shear strength of sands reinforced with randomly distributed discrete fibers[J]. Geotextiles and Geomembranes, 2003, 21(2): 103-110.
    [10]
    YETIMOGLU T, INANIR M, INANIR O E. A study on bearing capacity of randomly distributed fiber-reinforced sand fills overlying soft clay[J]. Geotextiles and Geomembranes, 2005, 23(2): 174-183.
    [11]
    WELKER A L, JOSTEN N. Interface friction of a geomembrane with a fiber reinforced soil[C] // Geo-Frontiers Congress, ASCE, Austin, Texas, United States, 2005: 1-7.
    [12]
    AKBULUT S, ARASAN S、KALKAN E. Modification of clay soils using scrap tire rubber and synthetic fibers[J].Applied Clay Science, 2007, 38(1): 23-32.
    [13]
    MAHESHWARI K V, DESAI A K, SOLANKI C H. Performance of fiber reinforced clayey soil[J]. The Electronic Journal of Geotechnical Engineering, 2011, 16: 1067-1082.
    [14]
    MOHAMED A E M K. Improvement of swelling clay properties using hay fibers[J]. Construction and Building Materials, 2013, 38: 242-247.
    [15]
    PRABAKAR J, SRIDHAR R S. Effect of random inclusion of sisal fibre on strengthbehaviour of soil[J]. Construction and Building Material, 2002, 16(2): 123-131.
    [16]
    蔡 奕, 施 斌, 高 玮, 等. 纤维石灰土工程性质的试验研究[J]. 岩土工程学报, 2006, 28(10): 1283-1287. (CAI Yi, SHI Bin, GAO Wei, et al. Experimental study on engineering properties of fibre-lime treated soils[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(10): 1283-1287. (in Chinese))
    [17]
    吴继玲, 张小平. 聚丙烯纤维加筋膨胀土强度试验研究[J].土工基础, 2011, 24(6): 71-73. (WU Ji-ling, ZHANG Xiao-ping. Study on strength of polypropylene fiber reinforced expansive soil[J]. Soil Engineering and Foundation, 2011, 24(6): 71-73. (in Chinese))
    [18]
    YANG Y, CHENG S, GU J, et al. Triaxial tests research on strength properties of the polypropylene fiber reinforced soil[C]// Multimedia Technology (ICMT), 2011 International Conference on IEEE, Kyoto, Japan, 2011: 1869-1872.
    [19]
    叶为民, 陈 宝, 卞祚庥, 等. 上海软土的非饱和三轴强度[J]. 岩土工程学报, 2006, 28(3): 317-321. (YE Wei-min, CHEN Bao, BIAN Zuo-xiu, et al. Triaxial shear strength of Shanghai unsaturated soft clay[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 317-321. (in Chinese))
    [20]
    TANG C S, SHI B, ZHAO L. Interfacial shear strength of fiber reinforced soil[J]. Geotextiles and Geomembranes, 2010, 28(1): 54-62.
  • Cited by

    Periodical cited type(37)

    1. 刘楚佳,刘晓辉,张旭,王悠. 改进的非定常Maxwell岩石蠕变模型及参数识别. 中国农村水利水电. 2025(01): 221-226 .
    2. 张亮亮,程桦,王晓健. 基于统计规律的岩石非稳态蠕变经验模型研究. 岩石力学与工程学报. 2025(01): 164-173 .
    3. 经来旺,冯瑜腾,郑霖,谢金鑫,黄旭,经纬. 考虑中间主应力和支护力的巷道围岩黏-弹塑性解. 中国矿业. 2025(01): 146-153 .
    4. 陈有亮,肖鹏,杜曦,王苏然,RAFIG A. 岩石非线性黏弹塑性损伤蠕变模型研究. 应用力学学报. 2025(01): 133-140 .
    5. 虎积元,盛冬发,陈泰聪,李子恒,俞红全. 岩石三维非线性黏弹塑性损伤蠕变模型研究. 河北工程大学学报(自然科学版). 2024(02): 36-42 .
    6. 郭超,徐晨,杜思宏. 抚顺西露天矿泥岩蠕变特性试验及介观模型研究. 辽宁工程技术大学学报(自然科学版). 2024(02): 156-162 .
    7. 王家辉,姜海波,喻天龙. 考虑应力路径的深埋高地温隧洞黏弹-塑性围岩解析解. 科学技术与工程. 2024(16): 6882-6890 .
    8. 胡涛涛,贺韶君,王栋. 考虑层理倾角的炭质板岩蠕变损伤本构模型. 浙江大学学报(工学版). 2024(08): 1704-1716 .
    9. 刘春,田纪辉,孙海涛,魏明尧,李文龙,戴康. 动载荷冲击后页岩蠕变试验及分数阶蠕变本构模型研究. 中国矿业大学学报. 2024(04): 726-736 .
    10. 刘文博,张树光,黄翔,刘轶品. 基于蠕变曲线对称的蠕变模型研究及参数敏感性分析. 煤炭科学技术. 2024(07): 48-56 .
    11. 张胜利,徐素国,肖宁,李静,李超. 温度-应力耦合作用下深部盐岩蠕变损伤模型. 煤炭学报. 2024(08): 3425-3438 .
    12. 高刚刚. 矸石充填体变形特征研究. 山西焦煤科技. 2024(08): 5-8 .
    13. 宋战平,王博文,范胜元,张宇涛,王军保. 考虑时效损伤的硬岩非线性蠕变本构模型研究. 岩石力学与工程学报. 2024(10): 2368-2380 .
    14. 刘旸,王迎超,余宏波,赵闯,郭崟,左亚鹏. 考虑宏细观耦合损伤的注浆加固体渗流-蠕变本构模型及试验验证. 中国矿业大学学报. 2024(05): 1006-1021 .
    15. 李宁,张茂建,张慧莉,徐诚,汪波. 滇中红层泥岩剪切蠕变特性及其本构模型. 中南大学学报(自然科学版). 2024(09): 3520-3529 .
    16. 黄勤钲. 高应力状态下岩石蠕变本构模型的研究. 长春工程学院学报(自然科学版). 2024(03): 32-36 .
    17. 郭鑫,鲁义,施式亮,李贺,李大芳. 高流态注浆材料膨胀及蠕变特性试验研究. 中国安全科学学报. 2024(10): 143-151 .
    18. 袁岽洋,王强,章伟康,王皓正,翟俊莅. 三轴压缩下巷道围岩蠕变参数分析及寿命预测研究. 矿业研究与开发. 2023(01): 103-108 .
    19. 陈有亮,陈奇键,肖鹏,杜曦,王苏然. 考虑水化学损伤的岩石真三轴蠕变本构模型. 力学学报. 2023(01): 159-168 .
    20. 程爱平,付子祥,邓代强,戴顺意,黄诗冰,叶祖洋. 高低应力水平下胶结充填体蠕变特征及分数阶本构模型. 中国矿业大学学报. 2023(02): 276-285+299 .
    21. 张怡斌,张亦海,马海涛,于正兴. 岩石非线性黏弹塑性损伤蠕变模型研究及其参数识别. 中国安全生产科学技术. 2023(06): 13-19 .
    22. 张卫泽,王琳庆,郭文重,陈雷. 基于Weibull分布的红砂岩三轴蠕变试验及模型研究. 水文地质工程地质. 2023(04): 137-148 .
    23. 于冰冰,李清,赵桐德,黄晨,高正华,王凯. 基于应力与时间双阈值的岩石全时态非线性蠕变损伤模型. 岩石力学与工程学报. 2023(08): 1928-1944 .
    24. 王璐,阚子威,唐时美,贺安,成昊宇. 卸荷破裂岩体非定常分数阶蠕变模型. 地下空间与工程学报. 2023(04): 1106-1114+1133 .
    25. 胡涛涛,康志斌,陈建勋,胡雄,王栋. 基于互层岩体的非定常黏弹塑性蠕变模型及有限元分析. 重庆大学学报. 2023(10): 118-126 .
    26. 周瑞鹤,程桦,蔡海兵,王晓健,郭龙辉. 三轴压缩分级卸荷条件下粉砂岩蠕变特性及蠕变模型. 岩石力学与工程学报. 2022(06): 1136-1147 .
    27. 程爱平,付子祥,刘立顺,戴顺意,黄诗冰,叶祖洋. 胶结充填体蠕变硬化-损伤特征及非线性本构模型. 采矿与安全工程学报. 2022(03): 449-457 .
    28. 刘克. 含弹性极限的Burgers模型研究. 重庆交通大学学报(自然科学版). 2022(09): 89-94 .
    29. 高安森,戚承志,罗伊,李长峰,王彪. 轴向荷载下岩石剪切破坏时效损伤蠕变模型研究. 金属矿山. 2022(09): 81-86 .
    30. 郭清海,张晓博. 高温热泉中稀土元素的地球化学行为及其指示意义:以西藏搭格架水热区为例. 地质科技通报. 2022(05): 172-180 .
    31. 谢妮,王丁浩,吕阳,高青. 酸腐蚀作用下川渝红层砂岩蠕变特性试验研究. 地质科技通报. 2022(05): 141-149 .
    32. 杜赓,冯子军,徐晓鹏,董文强. 高温三轴作用下无烟煤的物理特征研究. 煤矿安全. 2022(11): 1-6 .
    33. 李忠君,盛冬发,程旭,王怡楠. 考虑时效损伤的岩石非线性蠕变模型研究. 力学季刊. 2022(04): 835-843 .
    34. 黄非,宫婷婷. 基于Matlab和Monte Carlo方法的油页岩非均质热弹塑性损伤模型. 现代电子技术. 2021(03): 79-82 .
    35. 陈士海,夏晓,彭陆强,涂兵雄. 深部隧道开挖时空效应及其黏弹塑性分析. 隧道与地下工程灾害防治. 2021(01): 12-21 .
    36. 张亮亮,王晓健. 考虑黏弹塑性应变分离的岩石复合蠕变模型研究. 中南大学学报(自然科学版). 2021(05): 1655-1665 .
    37. 吴洋,贺强强,王永岩. 冻融循环下类岩石材料蠕变特性研究. 工业建筑. 2020(10): 106-110+62 .

    Other cited types(49)

Catalog

    Article views PDF downloads Cited by(86)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return