• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHONG Zilan, FENG Liqian, SHI Yuebo, WEN Weiping, ZHAO Mi. Seismic damage assessment of subway station subjected to mainshock-aftershock sequences[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1586-1594. DOI: 10.11779/CJGE20220788
Citation: ZHONG Zilan, FENG Liqian, SHI Yuebo, WEN Weiping, ZHAO Mi. Seismic damage assessment of subway station subjected to mainshock-aftershock sequences[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1586-1594. DOI: 10.11779/CJGE20220788

Seismic damage assessment of subway station subjected to mainshock-aftershock sequences

More Information
  • Received Date: June 21, 2022
  • Available Online: February 26, 2023
  • In the previous seismic analyses of underground structures, only the peak structural response under the main earthquake is considered, but the damage mechanism of underground structures subjected to sequential ground motions has not been fully understood yet. Special attention is paid to the seismic damage analyses of subway station structures under sequential ground motions. The seismic damage evolution of underground structures under aftershocks and the feasible seismic performance indices are explored. Seven bedrock earthquake records, which are back-calculated from seven mainshock- aftershock sequences, are adopted. Considering the influences of the directivity and relative intensities of sequential ground motions, nonlinear dynamic time history analyses of soil-underground structure system are performed. The peak inter-story drift ratios, residual inter-story drift ratios and Park-Ang index are used to evaluate the earthquake damage of the subway station. The results show that the directivity of aftershocks has irregular influences on the structural damage. When the relative intensity between the mainshock and aftershock is large, the underground structures damaged during the mainshock are likely to transit to a severer damage state. In terms of the selection of seismic damage evaluation indexes for the underground structures, the residual inter-story drift ratios are significantly affected by the relative direction between the mianshock and the aftershock. While the peak inter-story drift ratios cannot reflect the damage to the structures caused by the aftershock intensity smaller than the main shock. Therefore, both the peak and the residual inter-story drift ratios are not suitable for representing the additional damage of the underground structures caused by the aftershock. The Park-Ang index can reflect the excessive deformation damage and the accumulated hysteretic energy dissipation, which can better illustrate the actual damage of the structures under the mainshock-aftershock sequences, and is more feasible as the damage evaluation index of the underground structures subjected to sequential earthquakes.
  • [1]
    WANG G Q, BOORE D M, IGEL H, et al. Comparisons of ground motions from five aftershocks of the 1999 Chi-Chi, Taiwan, earthquake with empirical predictions largely based on data from California[J]. Bulletin of the Seismological Society of America, 2004, 94(6): 2198-2212. doi: 10.1785/0120030237
    [2]
    温卫平, 籍多发, 虞亦琦, 等. 考虑余震影响的RC框架结构抗震设计方法[J]. 土木工程学报, 2021, 54(2): 43-49. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202102005.htm

    WEN Weiping, JI Duofa, YU Yiqi, et al. Seismic design method of RC frame structures considering effects of aftershocks[J]. China Civil Engineering Journal, 2021, 54(2): 43-49. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202102005.htm
    [3]
    WEN W P, ZHAI C H, JI D F, et al. Framework for the vulnerability assessment of structure under mainshock- aftershock sequences[J]. Soil Dynamics and Earthquake Engineering, 2017, 101: 41-52. doi: 10.1016/j.soildyn.2017.07.002
    [4]
    于晓辉, 代旷宇, 周洲, 等. 主余震序列作用下钢筋混凝土框架结构损伤分析[J]. 建筑结构学报, 2019, 40(3): 127-133. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201903013.htm

    YU Xiaohui, DAI Kuangyu, ZHOU Zhou, et al. Damage assessment of a reinforced concrete frame structure subjected to mainshock-aftershock sequences[J]. Journal of Building Structures, 2019, 40(3): 127-133. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201903013.htm
    [5]
    IWATATE T, KOBAYASHI Y, KUSU H. Investigation and shaking table tests of subway structures of the hyogoken-Nanbu earthquake[J]. Proceedings of the 12WCEE, 2000: 1-6.
    [6]
    CHE A, IWATATE T. Shaking table test and numerical simulation of seismic response of subway structures[C]//Proceedings of the 7th International Conference on Structures under Shock and Impact. Montreal, 2002.
    [7]
    刘晶波, 刘祥庆, 王宗纲, 等. 土-结构动力相互作用系统离心机振动台模型试验[J]. 土木工程学报, 2010, 43(11): 114-121. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201011018.htm

    LIU Jingbo, LIU Xiangqing, WANG Zonggang, et al. Dynamic centrifuge model test of a soil-structure interaction system[J]. China Civil Engineering Journal, 2010, 43(11): 114-121. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201011018.htm
    [8]
    ASTROZA R, PASTÉN C, OCHOA-CORNEJO F. Site response analysis using one-dimensional equivalent-linear method and Bayesian filtering[J]. Computers and Geotechnics, 2017, 89: 43-54. doi: 10.1016/j.compgeo.2017.04.004
    [9]
    齐文浩. 土层地震反应分析方法的比较研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2004.

    QI Wenhao. Study on the Comparison of Soil Layers Seismic Response Analysis Methods[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2004. (in Chinese)
    [10]
    陈学良, 金星, 高孟潭. 近场速度脉冲场地响应等效线性分析的适用条件[J]. 哈尔滨工程大学学报, 2015, 36(8): 1049-1056. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201508008.htm

    CHEN Xueliang, JIN Xing, GAO Mengtan. Applicable conditions of the near-field site response of a large velocity pulse by equivalent linearization method[J]. Journal of Harbin Engineering University, 2015, 36(8): 1049-1056. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201508008.htm
    [11]
    杜修力, 许紫刚, 许成顺, 等. 基于等效线性化的土-地下结构整体动力时程分析方法研究[J]. 岩土工程学报, 2018, 40(12): 2155-2163. doi: 10.11779/CJGE201812001

    DU Xiuli, XU Zigang, XU Chengshun, et al. Time-history analysis method for soil-underground structure system based on equivalent linear method[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2155-2163. (in Chinese) doi: 10.11779/CJGE201812001
    [12]
    余文正, 陶忠, 潘文, 等. 隔震结构等效线性化计算方法对比研究[J]. 建筑结构学报, 2018, 39(1): 78-87. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201801010.htm

    YU Wenzheng, TAO Zhong, PAN Wen, et al. Comparative study on equivalent linearization calculation method in design of seismic isolated structure[J]. Journal of Building Structures, 2018, 39(1): 78-87. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201801010.htm
    [13]
    李洋. 浅埋地下框架结构地震破坏机理研究[D]. 北京: 北京工业大学, 2018.

    LI Yang. Earthquake Damage Mechanism of Shallow Buried Underground Frame Structures[D]. Beijing: Beijing University of Technology, 2018. (in Chinese)
    [14]
    PAKBAZ M C, YAREEVAND A. 2-D analysis of circular tunnel against earthquake loading[J]. Tunnelling and Underground Space Technology, 2005, 20(5): 411-417.
    [15]
    曲哲, 叶列平. 基于有效累积滞回耗能的钢筋混凝土构件承载力退化模型[J]. 工程力学, 2011, 28(6): 45-51. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201106009.htm

    QU Zhe, YE Lieping. Strength deterioration model based on effective hysteretic energy dissipation for rc members under cyclic loading[J]. Engineering Mechanics, 2011, 28(6): 45-51. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201106009.htm
    [16]
    城市轨道交通结构抗震设计规范: GB 50909—2014[S]. 北京: 中国标准出版社, 2014.

    Code for Seismic Design of Urban Rail Transit Structures: GB 50909—2014[S]. Beijing: Standards Press of China, 2014. (in Chinese)
    [17]
    庄海洋, 任佳伟, 王瑞, 等. 两层三跨框架式地铁地下车站结构弹塑性工作状态与抗震性能水平研究[J]. 岩土工程学报, 2019, 41(1): 131-138. doi: 10.11779/CJGE201901014

    ZHUANG Haiyang, REN Jiawei, WANG Rui, et al. Elasto-plastic working states and seismic performance levels of frame-type subway underground station with two layers and three spans[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 131-138. (in Chinese) doi: 10.11779/CJGE201901014
    [18]
    ZHANG C M, ZHAO M, ZHONG Z L, et al. Optimum intensity measures for probabilistic seismic demand model of subway stations with different burial depths[J]. Soil Dynamics and Earthquake Engineering, 2022, 154: 107138.
    [19]
    XU Z G, DU X L, XU C S, et al. Numerical research on seismic response characteristics of shallow buried rectangular underground structure[J]. Soil Dynamics and Earthquake Engineering, 2019, 116: 242-252.
    [20]
    TSINIDIS G, PITILAKIS K, TRIKALIOTI A D. Numerical simulation of round robin numerical test on tunnels using a simplified kinematic hardening model[J]. Acta Geotechnica, 2014, 9(4): 641-659.
    [21]
    杜修力, 蒋家卫, 许紫刚, 等. 浅埋矩形框架地铁车站结构抗震性能指标标定研究[J]. 土木工程学报, 2019, 52(10): 111-119, 128. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201910012.htm

    DU Xiuli, JIANG Jiawei, XU Zigang, et al. Study on quantification of seismic performance index for rectangular frame subway station structure[J]. China Civil Engineering Journal, 2019, 52(10): 111-119, 128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201910012.htm
    [22]
    WILLIAMS M S, SEXSMITH R G. Seismic damage indices for concrete structures: a state-of-the-art review[J]. Earthquake Spectra, 1995, 11(2): 319-349.
  • Cited by

    Periodical cited type(19)

    1. 彭俊皓,魏玉峰,李常虎,王群,李征征. 基于DBO-GRNN神经网络的冰水堆积物渗透系数预测. 人民长江. 2025(02): 167-174 .
    2. 张杰,黄勇. 长江漫滩区软土渗透系数计算方法对比分析. 中国煤炭地质. 2024(02): 37-42 .
    3. 王宇虓,杜广印,刘松玉,杨泳,周同和,徐金涛. 振杆密实法加固粗粒混合土模型试验. 工程科学与技术. 2024(03): 99-108 .
    4. 樊书抗,杨正权,朱凯斌,赵艺颖,刘小生,赵剑明. 土的级配特征与连续级配方程研究. 水利学报. 2024(05): 597-606 .
    5. 郭海,张安银. 基于PCA的长江漫滩软弱黏性土渗透特性研究. 江苏建筑. 2024(04): 102-105 .
    6. 赵桂锋,蒋明杰,张振,王天成,梅国雄. 粗粒土缩尺级配的渗透系数规律试验. 工程科学与技术. 2024(05): 240-246 .
    7. 李诗琪,杨忠平,刘浩宇,高宇豪,刘新荣. 考虑间断级配影响的土石混合体水力侵蚀分异机理. 土木工程学报. 2024(10): 125-134 .
    8. 付宏渊,杨海涛,吴二鲁,曾铃,钟涛,姜懿芸. 考虑炭质泥岩颗粒破碎的级配演化预测模型. 水利学报. 2024(09): 1058-1070 .
    9. 杨锴,杨奇,徐方,徐俏东,韩学良. 考虑细粒含量的单参数连续级配方程研究. 铁道科学与工程学报. 2024(12): 5094-5103 .
    10. 曲诗章,刘晓明,黎莉,陈仁朋. 基于双分形级配模型参数的粗粒土渗透系数计算公式. 岩土工程学报. 2023(01): 144-152 . 本站查看
    11. 侯龙清,袁晓铭,陈龙伟,李明东. 一种新型南55渗透仪研制及工程应用. 岩土工程学报. 2023(02): 419-425 . 本站查看
    12. 李浩,李春艳,张嵩,谢英美. 建筑工程中地质特征及岩土工程支护研究. 能源与环保. 2023(01): 181-186 .
    13. 赵贵章,孔令莹,徐远志,王淑丽,王展. 银川平原典型介质的颗粒级配对渗透系数的影响研究. 中国农村水利水电. 2023(04): 203-207 .
    14. 张福海,徐嘉成,薛浩宇,刘峥嵘. 级配分布对杂填土地基互嵌沉降影响的试验分析. 河南科学. 2023(05): 730-737 .
    15. 林玉祥,林浩东,莫品强,褚锋,庄培芝. 基于XGBoost的堆场软土渗透系数反演研究. 西安理工大学学报. 2023(01): 133-140 .
    16. 袁仕方,曹志翔,韩志洋,张玲洁. 藏东南粗粒土降雨入渗影响因素试验分析. 高原农业. 2022(02): 189-196 .
    17. 丁林楠,李国英,魏匡民. 描述土体级配分布的级配方程及其适用性. 岩土力学. 2022(S1): 173-183 .
    18. 段钊,袁林,毕银丽,王凯,吴延斌,张庆. 紫花苜蓿根系-黄土复合体剪切特性与库仑修正模型. 煤田地质与勘探. 2022(12): 85-95 .
    19. 骆莉莎,周昕,林军. 颗粒形态对粗粒土渗透系数影响的数值模拟研究. 湖南工业职业技术学院学报. 2021(01): 93-96 .

    Other cited types(16)

Catalog

    Article views (372) PDF downloads (102) Cited by(35)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return