• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
Experimental study on microstructure evolution of Beishan granite under high temperature conditions[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240992
Citation: Experimental study on microstructure evolution of Beishan granite under high temperature conditions[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240992

Experimental study on microstructure evolution of Beishan granite under high temperature conditions

More Information
  • Received Date: October 07, 2024
  • Available Online: March 12, 2025
  • Understanding the evolution of the microstructure and mechanical properties of granite under high temperature conditions is of great significance for the stability evaluation of rock engineering related to safe disposal of nuclear waste, geothermal mining, and tunnel fire repair. To quantitatively study the effect of temperature on the pore structure of granite, CT scanning and polarizing microscopy were used to analyze the microstructural characteristics such as fracture evolution, porosity, and pore size distribution of thermally damaged granite. The research results indicate that as the temperature increases, the uniaxial compressive strength and elastic modulus of granite gradually decrease, and the uniaxial compressive strength of granite significantly decreases after 500 ℃; High temperature can promote the development of granite pores and cracks, and enhance the connectivity of pores; The deterioration of mechanical properties of granite after high temperature is closely related to the changes in its pore structure, and the mechanical strength of granite decreases with increasing porosity; Granite undergoes physical and chemical processes such as water evaporation, mineral oxidation, and chemical bond fracture at high temperatures, which can cause defects such as grain boundary cracks, intragranular cracks, and transgranular cracks in mineral particles. The damage to rock structure caused by quartz phase transformation is particularly significant.
  • Related Articles

    [1]LI San-ming, YAN Bo, AN Hai-tang, CHENG Zong-liang, XU Wei. Causes and processing methods for quality defects of soft foundation reinforcement using CFG piles[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 216-219. DOI: 10.11779/CJGE2017S2052
    [2]WU Hai-min, SHU Yi-ming, CHANG Guang-pin, LIU Yun-feng, LIU Xin-xin, GU Ke. Field model tests on effective dewatering technology of geotextile tube filled by soil with high clay (silt) particle content[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(zk1): 209-215. DOI: 10.11779/CJGE2016S1039
    [3]ZHUANG Yan, MU Fan, CUI Xiao-yan, ZHANG Hai-xia. Application of Benoto pile in concealed bridge piled project near subway[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk2): 41-45. DOI: 10.11779/CJGE2015S2009
    [4]CHEN Fu, LI Hai-tao. Construction technology of cement deep mixing piles in Huanghua Port region[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 156-160. DOI: 10.11779/CJGE2015S1030
    [5]MENG Qing-bin, HAN Li-jun, SHI Rong-jian, LIU Zhi-jun, LU Tuo, LI Xiang-yang, SHI Gao-peng. Study and application of construction technology for inclined shafts penetrating drift sand strata in coal mine[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 900-910. DOI: 10.11779/CJGE201505016
    [6]LOU Nan, LIU Jun-yan, CAO Han-qing, CUI Wei-jiu. Construction technology for connecting passage of foundation pit under existing optical fiber cables of Greeland Center[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 212-215. DOI: 10.11779/CJGE2014S2035
    [7]YAN Ping, QIU Li. Hard bearing layer composite pile technology of rigid core rod-embedded strong mixing soils[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 1033-1036.
    [8]FANG Peng-fei, DONG Hong-bo. Construction technology of TC piles and its engineering application[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 116-119.
    [9]FANG Pengfei, ZHU Xiangrong, WU Caixia, YANG Jianhua. Technology and bearing behavior of cast-in-place pile with self-enlarging diving casing[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1905-1909.
    [10]LI Mingdong, ZHU Wei, MA Dianguang, JI Fengling. Construction technology and application in-situ of expanded polystyrene treated lightweight soil[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(4): 533-536.
  • Cited by

    Periodical cited type(15)

    1. 程虎,李重情,穆朝民. 冻结温度对不同粒径冻土石混合体劈裂特性的影响. 煤矿安全. 2024(01): 160-166 .
    2. 张勇敢,鲁洋,刘斯宏,田金博,张思钰,方斌昕. 土工袋抑制膨胀土冻胀性能试验及机制探讨. 岩土力学. 2024(03): 759-768+796 .
    3. 陈鑫,余文亮. 混合型缓冲回填材料劈裂抗拉强度尺寸效应统计分析. 科学技术与工程. 2024(10): 4229-4238 .
    4. 吴进财,孙屹,毕朝达,郁舒阳. 基于SPH方法的土体干缩开裂数值模拟研究. 水电能源科学. 2024(11): 87-91 .
    5. 田金博,张勇敢,鲁洋,马文鑫,刘斯宏,王柳江,刘瑾. 考虑初始饱和度影响的冻结渠坡膨胀土力学特性. 哈尔滨工业大学学报. 2024(11): 123-131 .
    6. 韦四江,翟黎伟,王猛,高继耀,王生柱,李鑫鹏. 不同速率加锚煤样抗拉力学响应特征试验研究. 采矿与安全工程学报. 2023(03): 458-466 .
    7. 谢敬礼,彭浩,杨明桃,杨建明,马利科. 缓冲/回填材料砌块抗拉强度试验研究. 世界核地质科学. 2023(02): 288-297 .
    8. 马冬冬,汪鑫鹏,张文璞,马芹永,周志伟,张蓉蓉. 冲击荷载作用下冻土劈裂拉伸破坏特性试验研究. 岩土工程学报. 2023(07): 1533-1539 . 本站查看
    9. 李新宇,凌贤长,曲娜. 考虑温度效应的冻结膨胀土统计损伤模型. 吉林大学学报(工学版). 2023(08): 2339-2349 .
    10. 刘勤龙,李旭,姚兆明,吴永康,蔡德钩. 冻土强度特性及其主控因素综述. 冰川冻土. 2023(03): 1092-1104 .
    11. 张思钰,张勇敢,刘斯宏,鲁洋. 膨胀土巴西劈裂强度及其破坏能量演化规律. 哈尔滨工业大学学报. 2023(11): 125-134 .
    12. 马文鑫,张勇敢,刘斯宏,郑军威,凤良,鲁洋. 干密度和温度对冻结膨胀土单轴压缩特性影响的试验研究. 冰川冻土. 2022(02): 515-523 .
    13. 张勇敢,刘斯宏,鲁洋,方斌昕,廖洁,张思钰. 袋装膨胀土强度变形特性及其碾压质量控制与检测. 河海大学学报(自然科学版). 2022(05): 118-123 .
    14. 王海航,周扬,赵晓东,王建州,周国庆. 冻土抗拉强度研究现状与展望. 冰川冻土. 2022(06): 1807-1819 .
    15. 郝常昊,任富强. 高原露天矿山冻土力学特性实验研究. 辽宁科技大学学报. 2022(06): 443-448 .

    Other cited types(15)

Catalog

    Article views (29) PDF downloads (10) Cited by(30)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return