• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
Research on machine learning model for refined inversion of mechanical parameters of surrounding rock considering zonal deterioration[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240641
Citation: Research on machine learning model for refined inversion of mechanical parameters of surrounding rock considering zonal deterioration[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240641

Research on machine learning model for refined inversion of mechanical parameters of surrounding rock considering zonal deterioration

More Information
  • Received Date: July 02, 2024
  • Available Online: October 31, 2024
  • The mechanical parameters of surrounding rock are one of the critical indicators in stability evaluation. However, existing methods that analyze all strata within a model often result in overestimated parameter values. To conduct a more refined study on the zonation characteristics of surrounding rock mechanical parameters, a novel approach combining surrounding rock zonation methods with parameter inversion models has been proposed, introducing a machine learning model for the inversion of mechanical parameters considering zonation degradation. This model employs the Coronavirus Herd Immunity Optimization (CHIO) algorithm to optimize the penalty factor and kernel function width of the Least Squares Support Vector Machine (LSSVM), significantly enhancing the precision and stability of parameter inversion. The effectiveness of the proposed method has been validated through theoretical solutions and engineering applications. Utilizing the Zhangji Mine in the Huainan mining area as a case study, five different hybrid machine learning models were compared regarding their prediction accuracy and generalization capabilities for surrounding rock mechanical parameters. The results demonstrate that the CHIO-LSSVM method achieves higher accuracy in parameter prediction. Finally, by integrating field-measured deformation data, parameter inversion analysis considering surrounding rock zonation degradation was conducted, and the inversion accuracy was validated through forward calculation results, indicating that this model is suitable for the refined inversion of zonation parameters in deep tunnel surrounding rock.
  • Cited by

    Periodical cited type(11)

    1. 李淑娥,陈志明,徐永福,徐宇冉,康峰沂,杜仲宝. 基于颗粒分布分形模型毛细水上升高度计算分析. 岩土工程学报. 2024(10): 2221-2228 . 本站查看
    2. 曲诗章,刘晓明,黎莉,陈仁朋. 基于双分形级配模型参数的粗粒土渗透系数计算公式. 岩土工程学报. 2023(01): 144-152 . 本站查看
    3. 韩志洋,曹志翔,黄开放. 基于离散元模拟的土石混合体剪切与变形特性研究. 中国农村水利水电. 2023(05): 238-244 .
    4. 刘晓义,胡敏,刘大顺. 基于离散元法的砂砾石颗粒破碎特征研究. 低温建筑技术. 2023(12): 24-28 .
    5. 孟敏强,肖杨,孙增春,张志超,蒋翔,刘汉龙,何想,吴焕然,史金权. 粗粒料及粒间微生物胶结的破碎-强度-能量耗散研究进展. 中国科学:技术科学. 2022(07): 999-1021 .
    6. 王瑞,郭聚坤,尹斌,雷胜友,魏道凯. 钙质砂颗粒形状及破碎特性试验研究. 海洋工程. 2022(05): 158-166 .
    7. 陈晓斌,郭云鹏,蔡德钩,尧俊凯,肖源杰. 铁路工程粗颗粒土路基填料研究现状与发展综述. 路基工程. 2021(03): 1-11 .
    8. 叶阳升,朱宏伟,尧俊凯,蔡德钩,安再展. 高速铁路路基振动压实理论与智能压实技术综述. 中国铁道科学. 2021(05): 1-11 .
    9. 于玉贞,张向韬,王远,吕禾,孙逊. 堆石料真三轴条件下力学特性试验研究进展. 工程力学. 2020(04): 1-21+29 .
    10. 王晓帅,王子寒,景晓昆,肖成志. 粗粒土大型直剪试验宏细观研究与离散元模拟. 深圳大学学报(理工版). 2020(03): 279-286 .
    11. 孟敏强,王磊,蒋翔,汪成贵,刘汉龙,肖杨. 基于尺寸效应的粗粒土单颗粒破碎试验及数值模拟. 岩土力学. 2020(09): 2953-2962 .

    Other cited types(20)

Catalog

    Article views PDF downloads Cited by(31)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return