Citation: | YAO Yangping, WANG Fangyu, WEI Ran. A simple cyclic loading CSUH model[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(4): 667-676. DOI: 10.11779/CJGE20240202 |
[1] |
RANDOLPH M, GOURVENEC S. Offshore Geotechnical Engineering[M]. London: Taylor & Francis Group, 2011.
|
[2] |
DAFALIAS Y F, POPOV E P. Cyclic loading for materials with a vanishing elastic region[J]. Nuclear Engineering and Design, 1977, 41(2): 293-302. doi: 10.1016/0029-5493(77)90117-0
|
[3] |
DAFALIAS Y F, MANZARI M T. Simple plasticity sand model accounting for fabric change effects[J]. Journal of Engineering Mechanics, 2004, 130(6): 622-634. doi: 10.1061/(ASCE)0733-9399(2004)130:6(622)
|
[4] |
张建民, 罗刚. 考虑可逆与不可逆剪胀的粗粒土动本构模型[J]. 岩土工程学报, 2005, 27(2): 178-184. http://cge.nhri.cn/cn/article/id/11585
ZHANG Jianmin, LUO Gang. A new cyclic constitutive model for granular soil considering reversible and irreversible dilatancy[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(2): 178-184. (in Chinese) http://cge.nhri.cn/cn/article/id/11585
|
[5] |
ASKARINEJAD F, HALABIAN A M, HASHEMALHOSSEINI S H. New viscoplastic bounding surface subloading model for time-dependent behavior of sands[J]. International Journal of Geomechanics, 2021, 21(4): 04021034. doi: 10.1061/(ASCE)GM.1943-5622.0001979
|
[6] |
万征, 孟达. 复杂加载条件下的砂土本构模型[J]. 力学学报, 2018, 50(4): 929-948.
WAN Zheng, MENG Da. A constitutive model for sand under complex loading conditions[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 929-948. (in Chinese)
|
[7] |
HUANG M S, LIU Y. Axial capacity degradation of single piles in soft clay under cyclic loading[J]. Soils and Foundations, 2015, 55(2): 315-328. doi: 10.1016/j.sandf.2015.02.008
|
[8] |
GAO Z W, ZHAO J D, LI X S, et al. A critical state sand plasticity model accounting for fabric evolution[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38(4): 370-390. doi: 10.1002/nag.2211
|
[9] |
GAO Z W, ZHAO J D. Constitutive modeling of anisotropic sand behavior in monotonic and cyclic loading[J]. Journal of Engineering Mechanics, 2015, 141(8): 04015017. doi: 10.1061/(ASCE)EM.1943-7889.0000907
|
[10] |
李潇旋, 李涛, 李舰, 等. 循环荷载下非饱和土的各向异性弹塑性双面模型[J]. 岩石力学与工程学报, 2019, 38(增刊2): 3758-3766.
LI Xiaoxuan, LI Tao, LI Jian, et al. Anisotropic elastoplastic two-surface model for unsaturated soils under cyclic loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S2): 3758-3766. (in Chinese)
|
[11] |
李潇旋, 李涛, 李舰. 超固结非饱和土的弹塑性双面模型[J]. 水利学报, 2020, 51(10): 1278-1288.
LI Xiaoxuan, LI Tao, LI Jian. Elastoplastic two-surface model for overconsolidated unsaturated soils[J]. Journal of Hydraulic Engineering, 2020, 51(10): 1278-1288. (in Chinese)
|
[12] |
YAO Y P, LIU L, LUO T, et al. Unified hardening (UH) model for clays and sands[J]. Computers and Geotechnics, 2019, 110: 326-343. doi: 10.1016/j.compgeo.2019.02.024
|
[13] |
YAO Y P, HOU W, ZHOU A N. UH model: three- dimensional unified hardening model for overconsolidated clays[J]. Géotechnique, 2009, 59(5): 451-469. doi: 10.1680/geot.2007.00029
|
[14] |
YAO Y P, GAO Z W, ZHAO J D, et al. Modified UH model: constitutive modeling of overconsolidated clays based on a parabolic hvorslev envelope[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(7): 860-868. doi: 10.1061/(ASCE)GT.1943-5606.0000649
|
[15] |
YAO Y P, ZHOU A N. Non-isothermal unified hardening model: a thermo-elasto-plastic model for clays[J]. Géotechnique, 2013, 63(15): 1328-1345. doi: 10.1680/geot.13.P.035
|
[16] |
YAO Y P, KONG L M, ZHOU A N, et al. Time-dependent unified hardening model: three-dimensional elastoviscoplastic constitutive model for clays[J]. Journal of Engineering Mechanics, 2015, 141(6): 04014162. doi: 10.1061/(ASCE)EM.1943-7889.0000885
|
[17] |
YAO Y P, NIU L, CUI W J. Unified hardening (UH) model for overconsolidated unsaturated soils[J]. Canadian Geotechnical Journal, 2014, 51(7): 810-821. doi: 10.1139/cgj-2013-0183
|
[18] |
姚仰平, 刘林, 罗汀. 砂土的UH模型[J]. 岩土工程学报, 2016, 38(12): 2147-2153. doi: 10.11779/CJGE201612002
YAO Yangping, LIU Lin, LUO Ting. UH model for sands[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2147-2153. (in Chinese) doi: 10.11779/CJGE201612002
|
[19] |
LI X S, DAFALIAS Y F. Dilatancy for cohesionless soils[J]. Géotechnique, 2000, 50(4): 449-460. doi: 10.1680/geot.2000.50.4.449
|
[20] |
YAO Y P, SUN D A. Application of Lade's Criterion to Cam-clay model[J]. Journal of Engineering Mechanics, 2000, 126(1): 112-119. doi: 10.1061/(ASCE)0733-9399(2000)126:1(112)
|
[21] |
YAO Y P, ZHOU A N, LU D C. Extended transformed stress space for geomaterials and its application[J]. Journal of Engineering Mechanics, 2007, 133(10): 1115-1123. doi: 10.1061/(ASCE)0733-9399(2007)133:10(1115)
|
[22] |
YAO Y P, WANG N D. Transformed stress method for generalizing soil constitutive models[J]. Journal of Engineering Mechanics, 2014, 140(3): 614-629. doi: 10.1061/(ASCE)EM.1943-7889.0000685
|
[23] |
姚仰平, 唐科松. 土的各向同性化变换应力方法[J]. 力学学报, 2022, 54(6): 1651-1659, I0003.
YAO Yangping, TANG Kesong. Isotropically transformed stress method for the anisotropy of soils[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1651-1659, I0003. (in Chinese)
|
[24] |
GHANTOUS I B. Prediction of in Situ Consolidation Parameters of Boston Blue Clay [D]. London: University of London, 1982.
|
[25] |
NAKAI T, HINOKIO M. A simple elastoplastic model for normally and overconsolidated soils with unified material parameters[J]. Soils and Foundations, 2004, 44(2): 53-70. doi: 10.3208/sandf.44.2_53
|
[26] |
TATSUOKA F, ISHIHARA K. Drained deformation of sand under cyclic stresses reversing direction[J]. Soils and Foundations, 1974, 14(3): 51-65. doi: 10.3208/sandf1972.14.3_51
|
[27] |
WICHTMANN T, TRIANTAFYLLIDIS T. An experimental database for the development, calibration and verification of constitutive models for sand with focus to cyclic loading: part Ⅰ—tests with monotonic loading and stress cycles[J]. Acta Geotechnica, 2016, 11(4): 739-761. doi: 10.1007/s11440-015-0402-z
|