• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YAO Yangping, WANG Fangyu, WEI Ran. A simple cyclic loading CSUH model[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(4): 667-676. DOI: 10.11779/CJGE20240202
Citation: YAO Yangping, WANG Fangyu, WEI Ran. A simple cyclic loading CSUH model[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(4): 667-676. DOI: 10.11779/CJGE20240202

A simple cyclic loading CSUH model

More Information
  • Received Date: December 11, 2024
  • Available Online: June 10, 2024
  • Soil exhibits hysteresis characteristic under cyclic loading. Under the basic framework of the unified hardening model for clays and sands, a simple H-CSUH model considering cyclic loading is established by constructing elastic hysteresis loops and improving low stress plastic stiffness. The main works are as follows: (1) The elastic response of the unloading line in the e-ln(p+ps) space is modified to be nonlinear by introducing parameters κ0 and w, where κ0 is used to reflect the initial unloading modulus and w is used to reflect the modulus change rate. The modified elastic unloading and reloading lines exhibit complete elastic hysteresis behavior. (2) A new hardening equation, denoted as Hh, is established by constructing a multiplier ζ, which improves the plastic stiffness of the model under low stress. Compared with the existing models, the H-CSUH model has a simpler form and fewer parameters, and achieves a unified description of the hysteretic behavior of clays and sands under cyclic loading. The validity of the model is confirmed through comparisons of drained and undrained test results across various types of clays and sands.
  • [1]
    RANDOLPH M, GOURVENEC S. Offshore Geotechnical Engineering[M]. London: Taylor & Francis Group, 2011.
    [2]
    DAFALIAS Y F, POPOV E P. Cyclic loading for materials with a vanishing elastic region[J]. Nuclear Engineering and Design, 1977, 41(2): 293-302. doi: 10.1016/0029-5493(77)90117-0
    [3]
    DAFALIAS Y F, MANZARI M T. Simple plasticity sand model accounting for fabric change effects[J]. Journal of Engineering Mechanics, 2004, 130(6): 622-634. doi: 10.1061/(ASCE)0733-9399(2004)130:6(622)
    [4]
    张建民, 罗刚. 考虑可逆与不可逆剪胀的粗粒土动本构模型[J]. 岩土工程学报, 2005, 27(2): 178-184. http://cge.nhri.cn/cn/article/id/11585

    ZHANG Jianmin, LUO Gang. A new cyclic constitutive model for granular soil considering reversible and irreversible dilatancy[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(2): 178-184. (in Chinese) http://cge.nhri.cn/cn/article/id/11585
    [5]
    ASKARINEJAD F, HALABIAN A M, HASHEMALHOSSEINI S H. New viscoplastic bounding surface subloading model for time-dependent behavior of sands[J]. International Journal of Geomechanics, 2021, 21(4): 04021034. doi: 10.1061/(ASCE)GM.1943-5622.0001979
    [6]
    万征, 孟达. 复杂加载条件下的砂土本构模型[J]. 力学学报, 2018, 50(4): 929-948.

    WAN Zheng, MENG Da. A constitutive model for sand under complex loading conditions[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 929-948. (in Chinese)
    [7]
    HUANG M S, LIU Y. Axial capacity degradation of single piles in soft clay under cyclic loading[J]. Soils and Foundations, 2015, 55(2): 315-328. doi: 10.1016/j.sandf.2015.02.008
    [8]
    GAO Z W, ZHAO J D, LI X S, et al. A critical state sand plasticity model accounting for fabric evolution[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38(4): 370-390. doi: 10.1002/nag.2211
    [9]
    GAO Z W, ZHAO J D. Constitutive modeling of anisotropic sand behavior in monotonic and cyclic loading[J]. Journal of Engineering Mechanics, 2015, 141(8): 04015017. doi: 10.1061/(ASCE)EM.1943-7889.0000907
    [10]
    李潇旋, 李涛, 李舰, 等. 循环荷载下非饱和土的各向异性弹塑性双面模型[J]. 岩石力学与工程学报, 2019, 38(增刊2): 3758-3766.

    LI Xiaoxuan, LI Tao, LI Jian, et al. Anisotropic elastoplastic two-surface model for unsaturated soils under cyclic loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S2): 3758-3766. (in Chinese)
    [11]
    李潇旋, 李涛, 李舰. 超固结非饱和土的弹塑性双面模型[J]. 水利学报, 2020, 51(10): 1278-1288.

    LI Xiaoxuan, LI Tao, LI Jian. Elastoplastic two-surface model for overconsolidated unsaturated soils[J]. Journal of Hydraulic Engineering, 2020, 51(10): 1278-1288. (in Chinese)
    [12]
    YAO Y P, LIU L, LUO T, et al. Unified hardening (UH) model for clays and sands[J]. Computers and Geotechnics, 2019, 110: 326-343. doi: 10.1016/j.compgeo.2019.02.024
    [13]
    YAO Y P, HOU W, ZHOU A N. UH model: three- dimensional unified hardening model for overconsolidated clays[J]. Géotechnique, 2009, 59(5): 451-469. doi: 10.1680/geot.2007.00029
    [14]
    YAO Y P, GAO Z W, ZHAO J D, et al. Modified UH model: constitutive modeling of overconsolidated clays based on a parabolic hvorslev envelope[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(7): 860-868. doi: 10.1061/(ASCE)GT.1943-5606.0000649
    [15]
    YAO Y P, ZHOU A N. Non-isothermal unified hardening model: a thermo-elasto-plastic model for clays[J]. Géotechnique, 2013, 63(15): 1328-1345. doi: 10.1680/geot.13.P.035
    [16]
    YAO Y P, KONG L M, ZHOU A N, et al. Time-dependent unified hardening model: three-dimensional elastoviscoplastic constitutive model for clays[J]. Journal of Engineering Mechanics, 2015, 141(6): 04014162. doi: 10.1061/(ASCE)EM.1943-7889.0000885
    [17]
    YAO Y P, NIU L, CUI W J. Unified hardening (UH) model for overconsolidated unsaturated soils[J]. Canadian Geotechnical Journal, 2014, 51(7): 810-821. doi: 10.1139/cgj-2013-0183
    [18]
    姚仰平, 刘林, 罗汀. 砂土的UH模型[J]. 岩土工程学报, 2016, 38(12): 2147-2153. doi: 10.11779/CJGE201612002

    YAO Yangping, LIU Lin, LUO Ting. UH model for sands[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2147-2153. (in Chinese) doi: 10.11779/CJGE201612002
    [19]
    LI X S, DAFALIAS Y F. Dilatancy for cohesionless soils[J]. Géotechnique, 2000, 50(4): 449-460. doi: 10.1680/geot.2000.50.4.449
    [20]
    YAO Y P, SUN D A. Application of Lade's Criterion to Cam-clay model[J]. Journal of Engineering Mechanics, 2000, 126(1): 112-119. doi: 10.1061/(ASCE)0733-9399(2000)126:1(112)
    [21]
    YAO Y P, ZHOU A N, LU D C. Extended transformed stress space for geomaterials and its application[J]. Journal of Engineering Mechanics, 2007, 133(10): 1115-1123. doi: 10.1061/(ASCE)0733-9399(2007)133:10(1115)
    [22]
    YAO Y P, WANG N D. Transformed stress method for generalizing soil constitutive models[J]. Journal of Engineering Mechanics, 2014, 140(3): 614-629. doi: 10.1061/(ASCE)EM.1943-7889.0000685
    [23]
    姚仰平, 唐科松. 土的各向同性化变换应力方法[J]. 力学学报, 2022, 54(6): 1651-1659, I0003.

    YAO Yangping, TANG Kesong. Isotropically transformed stress method for the anisotropy of soils[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1651-1659, I0003. (in Chinese)
    [24]
    GHANTOUS I B. Prediction of in Situ Consolidation Parameters of Boston Blue Clay [D]. London: University of London, 1982.
    [25]
    NAKAI T, HINOKIO M. A simple elastoplastic model for normally and overconsolidated soils with unified material parameters[J]. Soils and Foundations, 2004, 44(2): 53-70. doi: 10.3208/sandf.44.2_53
    [26]
    TATSUOKA F, ISHIHARA K. Drained deformation of sand under cyclic stresses reversing direction[J]. Soils and Foundations, 1974, 14(3): 51-65. doi: 10.3208/sandf1972.14.3_51
    [27]
    WICHTMANN T, TRIANTAFYLLIDIS T. An experimental database for the development, calibration and verification of constitutive models for sand with focus to cyclic loading: part Ⅰ—tests with monotonic loading and stress cycles[J]. Acta Geotechnica, 2016, 11(4): 739-761. doi: 10.1007/s11440-015-0402-z

Catalog

    Article views (588) PDF downloads (211) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return