• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
KANG Zuo, KANG Jiawei, DENG Guohua, ZHENG Jianguo, WANG Liqin, GAO Huyan. Self-weight collapsible characteristics of loess in Xi'an urban area[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(5): 914-925. DOI: 10.11779/CJGE20240063
Citation: KANG Zuo, KANG Jiawei, DENG Guohua, ZHENG Jianguo, WANG Liqin, GAO Huyan. Self-weight collapsible characteristics of loess in Xi'an urban area[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(5): 914-925. DOI: 10.11779/CJGE20240063

Self-weight collapsible characteristics of loess in Xi'an urban area

More Information
  • Received Date: January 18, 2024
  • Available Online: October 13, 2024
  • Based on the results of 12 large test pit immersion tests of loess and indoor collapsibility tests conducted during the construction process of Xi'an Rail Transit project, the self-weight collapsible deformation characteristics of loess in Xi'an urban area are systematically studied. The results show that: (1) Within the urban area of Xi'an, the collapse of each landform unit, from strong to weak, is in the following order: Weibei Loess Plateau > Chanhe Tertiary Terrace > pluvial tableland > loess ridge and depressiona > Shaoling Plateau (Duling Plateau, Shenhe Plateau), and Weihe Tertiary Terrace. The self-weight collapsible loess site accounts for 50% of the total number of test sites, and the maximum depth of the self-weight collapsible bottom limit is 20 m. The loess plateau in the southern part of the city is a non self-weight collapsible site. (2) The deformation of the self-weight collapse occurs mainly in the Q3 loess layer. Based on the immersion tests, the bottom boundary of self-weight collapse is mostly located in the Q3 ancient soil layer. Only Q2 losses in two sets of tests exhibit weak collapse. The uniform correction coefficient provided in the current regulations for the Guanzhong region overestimates the collapsibility of Q2 losses. (3) Distinguishing between geomorphic units and sedimentary ages of strata, the recommended values for the self-weight collapsible deformation correction coefficients of loess in Xi'an urban area are provided. (4) The measured area of settlement diffusion due to loess immersion and collapse is typically related to the depth and amount of self-weight collapse. It usually does not exceed 1.0 times the radius of the test pit and 1 times the measured collapsible limit depth. This can serve as a boundary for water accumulation around the project. (5) The development process of collapsible deformation of loess mainly includes five stages: rapid deformation, slow deformation, stable deformation, rapid deformation after water interruption, and stable deformation after water interruption. The larger the measured self-weight collapses, the greater the daily settlement rate during the sinking phase. The maximum consolidation settlement after water interruption is 95.1 mm.
  • [1]
    湿陷性黄土地区建筑标准: GB 50025—2018[S]. 北京: 中国建筑工业出版社, 2019.

    Standard for Building Construction in Collapsible Loess Regions: GB 50025—2018[S]. Beijing: China Architecture & Building Press, 2019. (in Chinese)
    [2]
    郑建国, 邓国华, 刘争宏, 等. 黄土湿陷性分布不连续对湿陷变形的影响研究[J]. 岩土工程学报, 2015, 37(1): 165-170. doi: 10.11779/CJGE201501020

    ZHENG Jianguo, DENG Guohua, LIU Zhenghong, et al. Influence of discontinuous distribution of collapsible loess on its deformation[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 165-170. (in Chinese) doi: 10.11779/CJGE201501020
    [3]
    李同录, 冯文清, 刘志伟, 等. Q2黄土湿陷系数试验压力取值的讨论[J]. 水文地质工程地质, 2023, 50(6): 59-68.

    LI Tonglu, FENG Wenqing, LIU Zhiwei, et al. A discussion of the test pressure of collapsible coefficient for Q2 loess[J]. Hydrogeology & Engineering Geology, 2023, 50(6): 59-68. (in Chinese)
    [4]
    邢义川, 谢定义, 李永红. 非饱和黄土湿陷过程中有效应力变化规律[J]. 岩石力学与工程学报, 2004, 23(7): 1100-1103. doi: 10.3321/j.issn:1000-6915.2004.07.009

    XING Yichuan, XIE Dingyi, LI Yonghong. Effective stress and collapse process of unsaturated loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(7): 1100-1103. (in Chinese) doi: 10.3321/j.issn:1000-6915.2004.07.009
    [5]
    方祥位, 成培江, 申春妮, 等. 陕西蒲城Q2黄土物质组成试验研究[J]. 后勤工程学院学报, 2012, 28(1): 1-6. doi: 10.3969/j.issn.1672-7843.2012.01.001

    FANG Xiangwei, CHENG Peijiang, SHEN Chunni, et al. The matter composition tests of Q2 loess in Pucheng, Shaanxi Province[J]. Journal of Logistical Engineering University, 2012, 28(1): 1-6. (in Chinese) doi: 10.3969/j.issn.1672-7843.2012.01.001
    [6]
    李大展, 何颐华, 隋国秀. Q2黄土大面积浸水试验研究[J]. 岩土工程学报, 1993, 15(2): 1-11. doi: 10.3321/j.issn:1000-4548.1993.02.001

    LI Dazhan, HE Yihua, SUI Guoxiu. Study and Test on immersion of Q2 Loess in Large Area[J]. Chinese Journal of Geotechnical Engineering, 1993, 15(2): 1-11. (in Chinese) doi: 10.3321/j.issn:1000-4548.1993.02.001
    [7]
    石怀清. 西安塬区中更新世Q2黄土场地浸水试验与研究[D]. 西安: 西安建筑科技大学, 2008.

    SHI Huaiqing. Immersion Test and Study on the Middle Pleistocene Q2 Loess Site in Xi'an Plateau[D]. Xi'an: Xi'an University of Architecture and Technology, 2008. (in Chinese)
    [8]
    黄雪峰, 陈正汉, 哈双, 等. 大厚度自重湿陷性黄土场地湿陷变形特征的大型现场浸水试验研究[J]. 岩土工程学报, 2006, 28(3): 382-389. doi: 10.3321/j.issn:1000-4548.2006.03.019

    HUANG Xuefeng, CHEN Zhenghan, HA Shuang, et al. Large area field immersion tests on characteristics of deformation of self weight collapse loess under overburden pressure[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 382-389. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.03.019
    [9]
    王治军, 潘俊义, 马闫, 等. 董志塬大厚度自重湿陷性黄土场地浸水试验研究[J]. 水文地质工程地质, 2016, 43(2): 75-82.

    WANG Zhijun, PAN Junyi, MA Yan, et al. Immersion test on the self-weight collapsible loess in the Dongzhiyuan Area[J]. Hydrogeology & Engineering Geology, 2016, 43(2): 75-82. (in Chinese)
    [10]
    马闫, 王家鼎, 彭淑君, 等. 大厚度黄土自重湿陷性场地浸水湿陷变形特征研究[J]. 岩土工程学报, 2014, 36(3): 537-546. doi: 10.11779/CJGE201403017

    MA Yan, WANG Jiading, PENG Shujun, et al. Immersion tests on characteristics of deformation of self-weight collapsible loess under overburden pressure[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 537-546. (in Chinese) doi: 10.11779/CJGE201403017
    [11]
    武小鹏, 熊治文, 王小军, 等. 郑西高速铁路豫西段黄土现场浸水自重湿陷特征研究[J]. 岩土力学, 2012, 33(6): 1769-1773. doi: 10.3969/j.issn.1000-7598.2012.06.026

    WU Xiaopeng, XIONG Zhiwen, WANG Xiaojun, et al. Study of immersion collapsible characteristics under overburden pressure of Western Henan loess along Zhengzhou-Xi'an high-speed railway[J]. Rock and Soil Mechanics, 2012, 33(6): 1769-1773. (in Chinese) doi: 10.3969/j.issn.1000-7598.2012.06.026
    [12]
    邵生俊, 李骏, 李国良, 等. 大厚度自重湿陷黄土湿陷变形评价方法的研究[J]. 岩土工程学报, 2015, 37(6): 965-978. doi: 10.11779/CJGE201506001

    SHAO Shengjun, LI Jun, LI Guoliang, et al. Evaluation method for self-weight collapsible deformation of large thickness loess foundation[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 965-978. (in Chinese) doi: 10.11779/CJGE201506001
    [13]
    姚志华, 黄雪峰, 陈正汉, 等. 关于黄土湿陷性评价和剩余湿陷量的新认识[J]. 岩土力学, 2014, 35(4): 998-1006.

    YAO Zhihua, HUANG Xuefeng, CHEN Zhenghan, et al. New recognition of collapsibility evaluation and remnant collapse of loess[J]. Rock and Soil Mechanics, 2014, 35(4): 998-1006. (in Chinese)
    [14]
    邢义川, 金松丽, 赵卫全, 等. 基于离心模型试验的黄土湿陷试验新方法研究[J]. 岩土工程学报, 2017, 39(3): 389-398. doi: 10.11779/CJGE201703001

    XING Yichuan, JIN Songli, ZHAO Weiquan, et al. New experimental method for loess collapsibility using centrifugal model tests[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 389-398. (in Chinese) doi: 10.11779/CJGE201703001
    [15]
    王铁行, 金鑫, 罗扬, 等. 考虑卸荷作用的黄土湿陷性评价方法研究[J]. 岩土力学, 2019, 40(4): 1281-1290.

    WANG Tiexing, JIN Xin, LUO Yang, et al. A method for evaluation of loess collapse potential of unloading[J]. Rock and Soil Mechanics, 2019, 40(4): 1281-1290. (in Chinese)

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return