Citation: | SHEN Mengfen, BAO Lichun, SUN Honglei, CAI Yuanqiang. Assessment of model bias of SPT, Vs and CPT-based liquefaction models[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 1-6. DOI: 10.11779/CJGE2023S20036 |
[1] |
段伟, 蔡国军, 赵泽宁, 等. 基于CPTU测试的砂质与粉质土液化概率模型与评价方法研究[J]. 岩土工程学报, 2023, 45(1): 66-74. doi: 10.11779/CJGE20210645
DUAN Wei, CAI Guojun, ZHAO Zening, et al. CPTU-based probabilistic model and evaluation method for liquefaction of sandy and silty soils[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 66-74. (in Chinese) doi: 10.11779/CJGE20210645
|
[2] |
YOUD T L, IDRISS I M. Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(4): 297-313. doi: 10.1061/(ASCE)1090-0241(2001)127:4(297)
|
[3] |
ANDRUS R D, STOKOE K H. Liquefaction resistance of soils from shear-wave velocity[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(11): 1015-1025. doi: 10.1061/(ASCE)1090-0241(2000)126:11(1015)
|
[4] |
ROBERTSON P K, WRIDE C F. Evaluating cyclic liquefaction potential using the cone penetration test[J]. Canadian Geotechnical Journal, 1998, 35(3): 442-459. doi: 10.1139/t98-017
|
[5] |
HU J L. Integration of double-weighted Bayesian and simplified methods for predicting seismic liquefaction based on multiple databases[J]. International Journal of Geomechanics, 2023, 23(12): 04023214. doi: 10.1061/IJGNAI.GMENG-8548
|
[6] |
ROLLINS K, AMOROSO S, HRYCIW R. Comparison of DMT, CPT, SPT, and Vs based liquefaction assessment on Treasure Island during the Loma Prieta earthquake[C]//Proc 3rd Int Conf on the Flat Dilatometer. London, 2015.
|
[7] |
ZHANG J, JUANG C H, MARTIN J R, et al. Inter-region variability of Robertson and Wride method for liquefaction hazard analysis[J]. Engineering Geology, 2016, 203: 191-203. doi: 10.1016/j.enggeo.2015.12.024
|
[8] |
XIAO S H, ZHANG J, YE J M, et al. Establishing region-specific N–Vs relationships through hierarchical Bayesian modeling[J]. Engineering Geology, 2021, 287: 106105. doi: 10.1016/j.enggeo.2021.106105
|
[9] |
ZHANG J, XIAO S H, HUANG H W, et al. Calibrating a standard penetration test based method for region-specific liquefaction potential assessment[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(10): 5185-5204. doi: 10.1007/s10064-020-01815-w
|
[10] |
GE Y X, ZHANG J, ZHU L W, et al. Developing region-specific liquefaction assessment criterion for Bachu region, China[J]. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 2020, 6(3): 04020026. doi: 10.1061/AJRUA6.0001070
|
[11] |
BOULANGER R, IDRISS I M. CPT-based liquefaction triggering procedure[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142: 04015065. doi: 10.1061/(ASCE)GT.1943-5606.0001388
|
[12] |
KAYEN R, MOSS R E S, THOMPSON E M, et al. Shear-wave velocity–based probabilistic and deterministic assessment of seismic soil liquefaction potential[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(3): 407-419. doi: 10.1061/(ASCE)GT.1943-5606.0000743
|
[13] |
KU C S, JUANG C H, CHANG C W, et al. Probabilistic version of the Robertson and Wride method for liquefaction evaluation: development and application[J]. Canadian Geotechnical Journal, 2012, 49(1): 27-44. doi: 10.1139/t11-085
|