Citation: | MA Weigong, WANG Lanmin, XU Shiyang, LI Dengke, CHAI Shaofeng. Shaking table tests on seismic liquefaction characteristics of soil surrounding tunnels in saturated loess stratum[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 171-176. DOI: 10.11779/CJGE2023S20021 |
[1] |
WANG Lanmin. Loess Dynamics[M]. Beijing: Seismological Press, 2003. (in Chinese)
|
[2] |
王兰民. 黄土地层大规模地震液化滑移的机理与风险评估[J]. 岩土工程学报, 2020, 42(1): 1-19. doi: 10.11779/CJGE202001001
WANG Lanmin. Mechanism and risk evaluation of sliding flow triggered by liquefaction of loess deposit during earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 1-19. (in Chinese) doi: 10.11779/CJGE202001001
|
[3] |
李德武, 马为功. 二次衬砌施作时机的弹粘塑性有限元分析[J]. 现代隧道技术, 2012, 49(4): 6-9. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201204004.htm
LI Dewu, MA Weigong. Elasto-viscoplastic finite element analysis of the installation time of a secondary lining[J]. Modern Tunnelling Technology, 2012, 49(4): 6-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201204004.htm
|
[4] |
GUAN Baoshu. Key Points of Tunnel Engineering Design[M]. Beijing: China Communications Press, 2003. (in Chinese)
|
[5] |
许新桩. 陕北黄土地区铁路隧道基底病害机理分析及治理措施[J]. 公路交通科技(应用技术版), 2015, 11(9): 17-19. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJJ201509008.htm
XU Xinzhuang. Mechanism analysis and treatment measures of railway tunnel foundation disease in loess area of northern Shaanxi[J]. Journal of Highway and Transportation Research and Development, 2015, 11(9): 17-19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJJ201509008.htm
|
[6] |
来弘鹏, 谭智鹏, 孙玉坤, 等. 富水黄土隧道施工过程围岩水分迁移规律研究[J]. 中国公路学报, 2023, 36(1): 150-161. doi: 10.3969/j.issn.1001-7372.2023.01.013
LAI Hongpeng, TAN Zhipeng, SUN Yukun, et al. Study on law of water migration in surrounding rock during construction of water-rich loess tunnel[J]. China Journal of Highway and Transport, 2023, 36(1): 150-161. (in Chinese) doi: 10.3969/j.issn.1001-7372.2023.01.013
|
[7] |
MA W G, WANG L M, WANG P, et al. The variation characteristics of dynamic shear stress reduction coefficient rd in loess tunnel stratum[J]. Soil Dynamics and Earthquake Engineering, 2023, 174: 108192. doi: 10.1016/j.soildyn.2023.108192
|
[8] |
SEED H B, IDRISS I M. Simplified procedure for evaluating soil liquefaction potential[J]. Journal of the Soil Mechanics and Foundations Division, 1971, 97(9): 1249-1273. doi: 10.1061/JSFEAQ.0001662
|
[9] |
ZHANG Kexu. Geotechnical Earthquake Engineering and Engineering Vibration[M]. Beijing: Science Press, 2016. (in Chinese)
|
[10] |
DING X M, ZHANG Y L, WU Q, et al. Shaking table tests on the seismic responses of underground structures in coral sand[J]. Tunnelling and Underground Space Technology, 2021, 109: 103775.
|
1. |
李晓强,梁靖宇,路德春,苗金波,杜修力. 非饱和土的非正交弹塑性本构模型. 中国科学:技术科学. 2022(07): 1048-1064 .
![]() | |
2. |
刘祎,蔡国庆,李舰,赵成刚. 非饱和土热–水–力全耦合本构模型及其验证. 岩土工程学报. 2021(03): 547-555 .
![]() | |
3. |
王壹敏,陈志敏,孙胜旗,赵运铎,张常书. 基于邓肯-张模型的低液限粉质黏土-砂的强度规律. 科学技术与工程. 2021(08): 3252-3257 .
![]() | |
4. |
胡小荣,蔡晓锋,瞿鹏. 基于坐标平移法的正常固结非饱和土三剪弹塑性本构模型. 应用数学和力学. 2021(08): 813-831 .
![]() | |
5. |
杨光昌,白冰,刘洋,陈佩佩. 描述饱和砂土剪切特性的一个热力学本构模型. 哈尔滨工业大学学报. 2021(11): 93-100 .
![]() |