Citation: | ZHENG Qiteng, ZHANG Xu, FENG Shijin, CHEN Hongxin, ZHANG Xiaolei. Mechanism and application of in-situ oxidation in low-permeability strata with a single fracture[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(5): 1036-1044. DOI: 10.11779/CJGE20231293 |
[1] |
陈能场, 郑煜基, 何晓峰, 等. 《全国土壤污染状况调查公报》探析[J]. 农业环境科学学报, 2017, 36(9): 1689-1692.
CHEN Nengchang, ZHENG Yuji, HE Xiaofeng, et al. Analysis of the report on the national general survey of soil contamination[J]. Journal of Agro-Environment Science, 2017, 36(9): 1689-1692. (in Chinese)
|
[2] |
孟宪荣, 许伟, 张建荣. 化工污染场地氯苯分布特征[J]. 土壤, 2019, 51(6): 1144-1150.
MENG Xianrong, XU Wei, ZHANG Jianrong. Distribution characters of chlorobenzene in polluted chemical industrial site[J]. Soils, 2019, 51(6): 1144-1150. (in Chinese)
|
[3] |
SIEGRIST R L A C. In Situ Chemical Oxidation for Groundwater Remediation[M]. New York: Springer, 2011.
|
[4] |
YEH C K J, WU H M, CHEN T C. Chemical oxidation of chlorinated non-aqueous phase liquid by hydrogen peroxide in natural sand systems[J]. Journal of Hazardous Materials, 2003, 96(1): 29-51. doi: 10.1016/S0304-3894(02)00147-4
|
[5] |
GAO L Z, ZHUANG J, NIE L, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles[J]. Nature Nanotechnology, 2007, 2(9): 577-583. doi: 10.1038/nnano.2007.260
|
[6] |
LEE E S, SCHWARTZ F W. Characteristics and applications of controlled-release KMnO4 for groundwater remediation[J]. Chemosphere, 2007, 66(11): 2058-2066. doi: 10.1016/j.chemosphere.2006.09.093
|
[7] |
HEIDERSCHEIDT J L, CRIMI M, SIEGRIST R L, et al. Optimization of full-scale permanganate ISCO system operation: laboratory and numerical studies[J]. Groundwater Monitoring & Remediation, 2008, 28(4): 72-84.
|
[8] |
REECE J, CHRISTENSON M, KAMBHU A, et al. Remediating contaminated groundwater with an aerated, direct-push, oxidant delivery system[J]. Water, 2020, 12(12): 3383. doi: 10.3390/w12123383
|
[9] |
蒲生彦, 唐菁, 侯国庆, 等. 缓释型化学氧化剂在地下水DNAPLs污染修复中的应用研究进展[J]. 环境化学, 2020, 39(3): 791-799.
PU Shengyan, TANG Jing, HOU Guoqing, et al. The application progress of sustained-release chemical oxidants in the remediation of DNAPLs contaminated groundwater[J]. Environmental Chemistry, 2020, 39(3): 791-799. (in Chinese)
|
[10] |
HU J, MOOD C G, MEAR M E. An efficient computational framework for height-contained growing and intersecting hydraulic fracturing simulation via SGBEM–FEM[J]. Computer Methods in Applied Mechanics and Engineering, 2024, 419: 116653. doi: 10.1016/j.cma.2023.116653
|
[11] |
LHOTSKÝ O, KUKAČKA J, SLUNSKÝ J, et al. The effects of hydraulic/pneumatic fracturing-enhanced remediation (FRAC-IN) at a site contaminated by chlorinated ethenes: a case study[J]. Journal of Hazardous Materials, 2021, 417: 125883. doi: 10.1016/j.jhazmat.2021.125883
|
[12] |
MURDOCH L C, SLACK W W. Forms of hydraulic fractures in shallow fine-grained formations[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(6): 479-487. doi: 10.1061/(ASCE)1090-0241(2002)128:6(479)
|
[13] |
SCHULENBERG J W, REEVES H W. Axi-symmetric simulation of soil vapor extraction influenced by soil fracturing[J]. Journal of Contaminant Hydrology, 2002, 57(3/4): 189-222.
|
[14] |
HAUSWIRTH S C, BOWERS C A, FOWLER C P, et al. Modeling cross model non-Newtonian fluid flow in porous media[J]. Journal of Contaminant Hydrology, 2020, 235: 103708. doi: 10.1016/j.jconhyd.2020.103708
|
[15] |
HORST J, DIVINE C, SCHNOBRICH M, et al. Groundwater remediation in low-permeability settings: the evolving spectrum of proven and potential [J]. Ground Water Monitoring and Remediation, 2019, 39(1): 11-19. doi: 10.1111/gwmr.12316
|
[16] |
FAN D M, GILBERT E J, FOX T. Current state of in situ subsurface remediation by activated carbon-based amendments[J]. Journal of Environmental Management, 2017, 204: 793-803. doi: 10.1016/j.jenvman.2017.02.014
|
[17] |
MAHMOODLU M G, HASSANIZADEH S M, HARTOG N. Evaluation of the kinetic oxidation of aqueous volatile organic compounds by permanganate[J]. Science of the Total Environment, 2014, 485: 755-763.
|
[18] |
CHA K Y, BORDEN R C. Impact of injection system design on ISCO performance with permanganate—mathematical modeling results[J]. Journal of Contaminant Hydrology, 2012, 128(1/2/3/4): 33-46.
|
[19] |
FENG S J, ZHANG X, ZHENG Q T, et al. Modeling the spreading and remediation efficiency of slow-release oxidants in a fractured and contaminated low-permeability stratum[J]. Chemosphere, 2023, 337: 139271. doi: 10.1016/j.chemosphere.2023.139271
|
[20] |
GELHAR L W. Stochastic subsurface hydrology from theory to applications[J]. Water Resources Research, 1986, 22(9): 135-145.
|
[21] |
GELHAR L W, WELTY C, REHFELDT K R. A critical review of data on field-scale dispersion in aquifers[J]. Water Resources Research, 1992, 28(7): 1955-1974. doi: 10.1029/92WR00607
|
[22] |
朱学愚, 钱孝星. 地下水水文学[M]. 北京: 中国环境科学出版社, 2005.
ZHU Xueyu, QIAN Xiaoxing. Groundwater Hydrology[M]. Beijing: China Environmental Science Press, 2005. (in Chinese)
|
[23] |
LUCKENBACH R. The Beilstein handbook of organic chemistry: the first hundred years[J]. Journal of Chemical Information and Computer Sciences, 1981, 21(2): 82-83. doi: 10.1021/ci00030a006
|
[24] |
YUAN B L, LI F, CHEN Y M, et al. Laboratory-scale column study for remediation of TCE-contaminated aquifers using three-section controlled-release potassium permanganate barriers[J]. Journal of Environmental Sciences, 2013, 25(5): 971-977. doi: 10.1016/S1001-0742(12)60134-X
|
[25] |
TZOVOLOU D N, AGGELOPOULOS C A, THEODOROPOULOU M A, et al. Remediation of the unsaturated zone of NAPL-polluted low permeability soils with steam injection: an experimental study[J]. Journal of Soils and Sediments, 2011, 11(1): 72-81. doi: 10.1007/s11368-010-0268-5
|
[26] |
YAN Y E, SCHWARTZ F W. Oxidative degradation and kinetics of chlorinated ethylenes by potassium permanganate[J]. Journal of Contaminant Hydrology, 1999, 37(3/4): 343-365.
|
[27] |
CHRISTENSON M D, KAMBHU A, COMFORT S D. Using slow-release permanganate candles to remove TCE from a low permeable aquifer at a former landfill[J]. Chemosphere, 2012, 89(6): 680-687. doi: 10.1016/j.chemosphere.2012.06.009
|
[28] |
KLOTZ D, SEILER K P, MOSER H, et al. Dispersivity and velocity relationship from laboratory and field experiments[J]. Journal of Hydrology, 1980, 45(3/4): 169-184.
|
[29] |
CHRISTENSON M, KAMBHU A, REECE J, et al. A five-year performance review of field-scale, slow-release permanganate candles with recommendations for second- generation improvements[J]. Chemosphere, 2016, 150: 239-247. doi: 10.1016/j.chemosphere.2016.01.125
|
[30] |
王浩越, 陈宏信, 冯世进, 等. 非平衡吸附条件下双分子反应性溶质运移规律研究[J]. 岩土工程学报, 2023, 45(12): 2547-2555. doi: 10.11779/CJGE20221063
WANG Haoyue, CHEN Hongxin, FENG Shijin, et al. Migration of bimolecular reactive solutes considering nonequilibrium sorption[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2547-2555. (in Chinese) doi: 10.11779/CJGE20221063
|
[31] |
GOMEZ-TAYLOR M. National primary drinking water regulation for nitrate and nitrite[J]. Abstracts of Papers of the American Chemical Society, 1989, 197.
|
[32] |
CHEN H, FENG S J, ZHENG Q T, et al. Enhanced delivery of amendments in fractured clay sites based on multi-point injection: an analytical study[J]. Chemosphere, 2022, 297: 134086. doi: 10.1016/j.chemosphere.2022.134086
|