• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CUI Hao, LIU Hanlong, XIAO Yang. Cyclic shearing characteristics of calcareous sand-snake skin-inspired interfaces[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(5): 1014-1024. DOI: 10.11779/CJGE20231283
Citation: CUI Hao, LIU Hanlong, XIAO Yang. Cyclic shearing characteristics of calcareous sand-snake skin-inspired interfaces[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(5): 1014-1024. DOI: 10.11779/CJGE20231283

Cyclic shearing characteristics of calcareous sand-snake skin-inspired interfaces

More Information
  • Received Date: December 27, 2023
  • Available Online: May 20, 2024
  • In marine geotechnical engineering, the dynamic response of the calcareous sand-structure interfaces is critical to the overall stability of structures. The snake skin-inspired interface is a new type of interface developed based on the geometric asymmetry of the ventral scales of snakes, which has attracted the attention of researchers due to the frictional anisotropy during shearing. Based on the direct shear apparatus for interface, a series of cyclic shear tests are carried out on the interfaces between calcareous sand and snake skin-inspired steel surfaces. The effects of normal stress, cyclic amplitude and apparent interface shape on the shear stiffness and damping ratio are investigated. The test results show that increasing the normal stress increases the shear stiffness of interface and decreases the damping ratio. Increasing the cyclic amplitude leads to a decrease in the shear stiffness and an increase in the damping ratio. The shear stiffness decreases with the increase in the scale geometric ratio, while the damping ratio shows the opposite trend. In addition, for the same scale geometric ratio, the shear stiffness increases with the increase in scale height, while the damping ratio decreases. The data fitting results show that the shear stiffness and damping ratio have a linear and logarithmic relationship with the normal stress, respectively. The shear stiffness and damping ratio have an inverse reduction and logarithmic relationship with the shear displacement amplitude, respectively. The power function can represent the relationship between the shear stiffness and the scale geometric ratio, as well as the relationship between the damping ratio and scale geometric ratio. The research results in this study will provide an important theoretical basis for the application of snake skin-inspired interfaces in marine uplift piles.
  • [1]
    王新志, 汪稔, 孟庆山, 等. 南沙群岛珊瑚礁礁灰岩力学特性研究[J]. 岩石力学与工程学报, 2008, 27(11): 2221-2226. doi: 10.3321/j.issn:1000-6915.2008.11.007

    WANG Xinzhi, WANG Ren, MENG Qingshan, et al. Research on characteristics of coral reef calcareous rock in Nansha islands[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(11): 2221-2226. (in Chinese) doi: 10.3321/j.issn:1000-6915.2008.11.007
    [2]
    LIU L, LIU H L, STUEDLEIN A W, et al. Strength, stiffness, and microstructure characteristics of biocemented calcareous sand[J]. Canadian Geotechnical Journal, 2019, 56(10): 1502-1513. doi: 10.1139/cgj-2018-0007
    [3]
    吴京平, 楼志刚. 海洋桩基工程中的钙质土[J]. 海洋工程, 1996, 14(3): 75-83.

    WU Jingping, LOU Zhigang. Research on the behavior of calcareous soils in offshore pile foundations[J]. The Ocean Engineering, 1996, 14(3): 75-83. (in Chinese)
    [4]
    PENG Y, LIU H L, LI C, et al. The detailed particle breakage around the pile in coral sand[J]. Acta Geotechnica, 2021, 16(6): 1971-1981. doi: 10.1007/s11440-020-01089-2
    [5]
    SABERI M, ANNAN CD, KONRAD JM, et al. A critical state two-surface plasticity model for gravelly soil-structure interfaces under monotonic and cyclic loading[J]. Comput Geotech, 2016, 80: 71-82. doi: 10.1016/j.compgeo.2016.06.011
    [6]
    SABERI M, ANNAN C, KONRAD J. Constitutive modeling of gravelly soil-structure interface considering particle breakage[J]. J Eng Mech, 2017, 143(8): 04017044. doi: 10.1061/(ASCE)EM.1943-7889.0001246
    [7]
    LINGS M L, DIETZ M S. The peak strength of sand-steel interfaces and the role of dilation[J]. Soils and Foundations, 2005, 45(6): 1-14. doi: 10.3208/sandf.45.1
    [8]
    闫澍旺, 林澍, 贾沼霖, 等. 海洋土与钢桩界面剪切强度的大型直剪试验研究[J]. 岩土工程学报, 2018, 40(3): 495-501. doi: 10.11779/CJGE201803013

    YAN Shuwang, LIN Shu, JIA Zhaolin, et al. Large-scale direct shear tests on shear strength of interface between marine soil and steel piles[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 495-501. (in Chinese) doi: 10.11779/CJGE201803013
    [9]
    胡黎明, 濮家骝. 土与结构物接触面物理力学特性试验研究[J]. 岩土工程学报, 2001, 23(4): 431-435. doi: 10.3321/j.issn:1000-4548.2001.04.010

    HU Liming, PU Jialiu. Experimental study on mechanical characteristics of soil-structure interface[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(4): 431-435. (in Chinese) doi: 10.3321/j.issn:1000-4548.2001.04.010
    [10]
    LASHKARI A, JAMALI V. Global and local sand–geosynthetic interface behaviour[J]. Géotechnique, 2021, 71(4): 346-367. doi: 10.1680/jgeot.19.P.109
    [11]
    QANNADIZADEH A, SHOURIJEH P T, LASHKARI A. Laboratory investigation and constitutive modeling of the mechanical behavior of sand–GRP interfaces[J]. Acta Geotechnica, 2022, 17(10): 4253-4275. doi: 10.1007/s11440-022-01533-5
    [12]
    HAN F, GANJU E S, SALGADO R, et al. Effects of interface roughness, particle geometry, and gradation on the sand–steel interface friction angle[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(12): 04018096. doi: 10.1061/(ASCE)GT.1943-5606.0001990
    [13]
    SU L J, ZHOU W H, CHEN W B, et al. Effects of relative roughness and mean particle size on the shear strength of sand-steel interface[J]. Measurement, 2018, 122: 339-346. doi: 10.1016/j.measurement.2018.03.003
    [14]
    WANG H L, ZHOU W H, YIN Z Y, et al. Effect of grain size distribution of sandy soil on shearing behaviors at soil–structure interface[J]. Journal of Materials in Civil Engineering, 2019, 31(10): 04019238. doi: 10.1061/(ASCE)MT.1943-5533.0002880
    [15]
    刘飞禹, 王攀, 王军, 等. 筋—土界面循环剪切刚度和阻尼比的试验研究[J]. 岩土力学, 2016, 37(增刊 1): 159-165.

    LIU Feiyu, WANG Pan, WANG Jun, et al. Experimental research on reinforcement-soil interface stiffness and damping ratio under cyclic shearing[J]. Rock and Soil Mechanics, 2016, 37(S1): 159-165. (in Chinese)
    [16]
    芮圣洁, 国振, 王立忠, 等. 钙质砂与钢界面循环剪切刚度与阻尼比的试验研究[J]. 岩土力学, 2020, 41(1): 78-86.

    RUI Shengjie, GUO Zhen, WANG Lizhong, et al. Experimental study of cyclic shear stiffness and damping ratio of carbonate sand-steel interface[J]. Rock and Soil Mechanics, 2020, 41(1): 78-86. (in Chinese)
    [17]
    MARVI H, COOK J P, STREATOR J L, et al. Snakes move their scales to increase friction[J]. Biotribology, 2016, 5: 52-60. doi: 10.1016/j.biotri.2015.11.001
    [18]
    MARTINEZ A, PALUMBO S, TODD B D. Bioinspiration for anisotropic load transfer at soil-structure interfaces[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(10): 04019074. doi: 10.1061/(ASCE)GT.1943-5606.0002138
    [19]
    STUTZ H H, MARTINEZ A. Directionally dependent strength and dilatancy behavior of soil–structure interfaces[J]. Acta Geotechnica, 2021, 16(9): 2805-2820. doi: 10.1007/s11440-021-01199-5
    [20]
    O'HARA K B, MARTINEZ A. Monotonic and cyclic frictional resistance directionality in snakeskin-inspired surfaces and piles[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(11): 04020116. doi: 10.1061/(ASCE)GT.1943-5606.0002368
    [21]
    O'HARA K B, MARTINEZ A. Load transfer directionality of snakeskin-inspired piles during installation and pullout in sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2022, 148(12): 04022110. doi: 10.1061/(ASCE)GT.1943-5606.0002929
    [22]
    ZHONG W H, LIU H L, WANG Q, et al. Investigation of the penetration characteristics of snake skin-inspired pile using DEM[J]. Acta Geotechnica, 2021, 16: 1849-1865. doi: 10.1007/s11440-020-01132-2
    [23]
    XIAO Y, CUI H, SHI JQ, et al. Shear response of calcareous sand-steel snake skin-inspired interfaces[J]. Acta Geotech, 2024, 19(3): 1517-1527. doi: 10.1007/s11440-023-02151-5
    [24]
    VIEIRA C S, LOPES M L, CALDEIRA L M. Sand-geotextile interface characterisation through monotonic and cyclic direct shear tests[J]. Geosynthetics International, 2013, 20(1): 26-38. doi: 10.1680/gein.12.00037
    [25]
    NYE C J, FOX P J. Dynamic shear behavior of a needle-punched geosynthetic clay liner[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(8): 973-983. doi: 10.1061/(ASCE)1090-0241(2007)133:8(973)
    [26]
    刘飞禹, 施静, 王军, 等. 三明治形加筋土筋-土界面动力剪切特性[J]. 岩土力学, 2018, 39(6): 1991-1998.

    LIU Feiyu, SHI Jing, WANG Jun, et al. Dynamic shear behavior of interface for clay reinforced with geogrid encapsulated in thin layers of sand[J]. Rock and Soil Mechanics, 2018, 39(6): 1991-1998. (in Chinese)
    [27]
    KOU H L, DIAO W Z, ZHANG W C, et al. Experimental study of interface shearing between calcareous sand and steel plate considering surface roughness and particle size[J]. Applied Ocean Research, 2021, 107: 102490. doi: 10.1016/j.apor.2020.102490
    [28]
    SAMANTA M, PUNETHA P, SHARMA M. Effect of roughness on interface shear behavior of sand with steel and concrete surface[J]. Geomechanics and Engineering, 2018, 14(4): 387-398.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return