• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Siyu, ZHANG Yonggan, LU Yang, LIU Sihong. Experimental study on freezing deformation characteristics of unsaturated expansive soils considering cyclic freeze-thaw and initial anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(5): 1004-1013. DOI: 10.11779/CJGE20231279
Citation: ZHANG Siyu, ZHANG Yonggan, LU Yang, LIU Sihong. Experimental study on freezing deformation characteristics of unsaturated expansive soils considering cyclic freeze-thaw and initial anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(5): 1004-1013. DOI: 10.11779/CJGE20231279

Experimental study on freezing deformation characteristics of unsaturated expansive soils considering cyclic freeze-thaw and initial anisotropy

More Information
  • Received Date: December 27, 2023
  • Available Online: September 26, 2024
  • The swelling and shrinkage deformation of the expansive soils in seasonally frozen regions is significant, which seriously induces engineering hazards and disasters. To investigate the freezing-induced deformation characteristics of the unsaturated expansive soils under the influences of cyclic freeze-thaw and initial anisotropy, a series of cyclic freeze-thaw tests and volumetric variation measurement tests on the compacted expansive soils are carried out. The test results show that: (1) Compared with the melting state, the volumetric strain of the expansive soils in freezing state is more significantly affected by the dry density and water content. The higher the water content and dry density, the greater the difference of frozen and melted volumetric strains. (2) With the increase of the initial saturation, the frozen volumetric strain of the expansive soil samples first decreases and then increases, indicating freezing shrinkage at low saturation and freezing swelling at high saturation. (3) There is a good quadratic relationship between the frozen volumetric strain and the water content, and there exists a characteristic value of "critical water content", at which the maximum volumetric shrinkage occurs. (4) Under the cyclic freeze-thaw action, the frozen volumetric strain of the samples with low water content is more stable than that with the higher water content. The cumulative effects of the axial strain with freezing times are more significant than those of the radial strain. (5) The frozen deformation has compaction-induced anisotropy, which is more significant at higher water contents. The research results can provide reference for the deformation control and disaster prevention of the expansive soils in seasonally frozen regions.
  • [1]
    刘祖强, 罗红明, 郑敏, 等. 南水北调渠坡膨胀土胀缩特性及变形模型研究[J]. 岩土力学, 2019, 40(增刊 1): 409-414.

    LIU Zuqiang, LUO Hongming, ZHENG Min, et al. Study on swelling and shrinkage characteristics and deformation model of expansive soil on canal slope of South-to-North Water Transfer Project[J]. Rock and Soil Mechanics, 2019, 40(S1): 409-414. (in Chinese)
    [2]
    张凌凯, 崔子晏. 干湿-冻融循环条件下膨胀土的压缩及渗透特性变化规律[J]. 岩土力学, 2023, 44(3): 728-740.

    ZHANG Lingkai, CUI Ziyan. Compression and permeability characteristics of expansive soil under drying-wetting-freezing-thawing cycles[J]. Rock and Soil Mechanics, 2023, 44(3): 728-740. (in Chinese)
    [3]
    凌贤长, 罗军, 耿琳, 等. 季节冻土区非饱和膨胀土水-热-变形耦合冻胀模型[J]. 岩土工程学报, 2022, 44(7): 1255-1265. doi: 10.11779/CJGE202207006

    LING Xianchan, LUO Jun, GENG Lin, et al. Coupled hydro-thermo-deformation frost heave model for unsaturated expansive soils in seasonally frozen soil regions[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(7): 1255-1265. (in Chinese) doi: 10.11779/CJGE202207006
    [4]
    徐丽丽, 刘丽佳, 徐昭巍, 等. 季节冻土区膨胀土边坡冻害防护综合技术[J]. 岩土工程学报, 2016, 38(增刊 1): 216-220. doi: 10.11779/CJGE2016S1040

    XU Lili, LIU Lijia, XU Zhaowei, et al. Integrated protection technology for expansive soil slopes in seasonally frozen zones[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(S1): 216-220. (in Chinese) doi: 10.11779/CJGE2016S1040
    [5]
    高国瑞. 膨胀土的微结构和膨胀势[J]. 岩土工程学报, 1984, 6(2): 40-48. doi: 10.3321/j.issn:1000-4548.1984.02.004

    GAO Guorui. Microstructures of expansive soil and swelling potential[J]. Chinese Journal of Geotechnical Engineering, 1984, 6(2): 40-48. (in Chinese) doi: 10.3321/j.issn:1000-4548.1984.02.004
    [6]
    曾浩, 唐朝生, 刘昌黎, 等. 膨胀土干燥过程中收缩应力的测试与分析[J]. 岩土工程学报, 2019, 41(4): 717-725. http://cge.nhri.cn/article/id/8782

    ZENG Hao, TANG Chaosheng, LIU Changli, et al. Measurement and analysis of shrinkage stress of expansive soils during drying process[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 717-725. (in Chinese) http://cge.nhri.cn/article/id/8782
    [7]
    胡东旭, 李贤, 周超云, 等. 膨胀土干湿循环胀缩裂隙的定量分析[J]. 岩土力学, 2018, 39(增刊 1): 318-324.

    HU Dongxu, LI Xian, ZHOU Chaoyun, et al. Quantitative analysis of swelling and shrinkage cracks in expansive soil under dry-wet cycle[J]. Rock and Soil Mechanics, 2018, 39(S1): 318-324. (in Chinese)
    [8]
    QI J L, VERMEER P A, CHENG G D. A review of the influence of freeze-thaw cycles on soil geotechnical properties[J]. Permafrost and Periglacial Processes, 2006, 17(3): 245-252. doi: 10.1002/ppp.559
    [9]
    HAMILTON A B. Freezing shrinkage in compacted clays[J]. Canadian Geotechnical Journal, 1966, 3(1): 1-17. doi: 10.1139/t66-001
    [10]
    LU Y, LIU S H, ALONSO E, et al. Volume changes and mechanical degradation of a compacted expansive soil under freeze-thaw cycles[J]. Cold Regions Science and Technology, 2019, 157: 206-214. doi: 10.1016/j.coldregions.2018.10.008
    [11]
    HUANG Y H, CHEN Y, WANG S, et al. Effects of freeze-thaw cycles on volume change behavior and mechanical properties of expansive clay with different degrees of compaction[J]. International Journal of Geomechanics, 2022, 22(5): 04022050. doi: 10.1061/(ASCE)GM.1943-5622.0002347
    [12]
    LI T G, KONG L W, GUO A G. The deformation and microstructure characteristics of expansive soil under freeze–thaw cycles with loads[J]. Cold Regions Science and Technology, 2021, 192: 103393. doi: 10.1016/j.coldregions.2021.103393
    [13]
    赵贵涛, 韩仲, 邹维列, 等. 干湿、冻融循环对膨胀土土-水及收缩特征的影响[J]. 岩土工程学报, 2021, 43(6): 1139-1146. doi: 10.11779/CJGE202106018

    ZHAO Guitao, HAN Zhong, ZOU Weilie, et al. Influences of drying-wetting-freeze-thaw cycles on soil-water and shrinkage characteristics of expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1139-1146. (in Chinese) doi: 10.11779/CJGE202106018
    [14]
    刘振亚, 刘建坤, 李旭, 等. 非饱和粉质黏土冻结温度和冻结变形特性试验研究[J]. 岩土工程学报, 2017, 39(8): 1381-1387. doi: 10.11779/CJGE201708004

    LIU Zhenya, LIU Jiankun, LI Xu, et al. Experimental study on freezing point and deformation characteristics of unsaturated silty clay subjected to freeze-thaw cycles[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1381-1387. (in Chinese) doi: 10.11779/CJGE201708004
    [15]
    土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.

    Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
    [16]
    膨胀土地区建筑技术规范: GB 50112—2013[S]. 北京: 中国建筑工业出版社, 2013.

    Technical Code for Building in Expansive Soil Regions: GB 50112—2013[S]. Beijing: China Architecture & Building Press, 2013. (in Chinese)
    [17]
    张勇敢, 鲁洋, 刘斯宏, 等. 基于巴西劈裂试验的冻结膨胀土拉伸特性研究[J]. 岩土工程学报, 2021, 43(11): 2046-2054. doi: 10.11779/CJGE202111011

    ZHANG Yonggan, LU Yang, LIU Sihong, et al. Experimental study on tensile strength of frozen expansive soils based on Brazilian splitting tests[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2046-2054. (in Chinese) doi: 10.11779/CJGE202111011
    [18]
    范秋雁, 梁昕, 韩进仕. 非饱和膨胀岩饱和度及胀缩特性试验研究[J]. 岩石力学与工程学报, 2020, 39(1): 45-56.

    FAN Qiuyan, LIANG Xin, HAN Jinshi. Experimental study on saturation and swelling-shrinkage characteristics of unsaturated expansive rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(1): 45-56. (in Chinese)
    [19]
    周葆春, 孔令伟, 梁维云, 等. 压缩过程中非饱和膨胀土体变特征与持水特性的水力耦合效应[J]. 岩土工程学报, 2015, 37(4): 629-640. doi: 10.11779/CJGE201504008

    ZHOU Baochun, KONG Lingwei, LIANG Weiyun, et al. Hydro-mechanical coupling effects on volume change and water retention behaviour of unsaturated expansive soils during compression[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 629-640. (in Chinese) doi: 10.11779/CJGE201504008
    [20]
    ALONSO E E, GENS A, HIGHT D W. Special problems soils. General Report[C]// 9th European Conference on Soil Mechanics and Foundations Engineering, Dublin, 1987.
    [21]
    SABA S, DELAGE P, LENOIR N, et al. Further insight into the microstructure of compacted bentonite–sand mixture[J]. Engineering Geology, 2014, 168: 141-148. doi: 10.1016/j.enggeo.2013.11.007
    [22]
    COUSSY O. Poromechanics of freezing materials[J]. Journal of the Mechanics and Physics of Solids, 2005, 53(8): 1689-1718. doi: 10.1016/j.jmps.2005.04.001
    [23]
    REN J P, VANAPALLI S K. Comparison of soil‐freezing and soil‐water characteristic curves of two Canadian soils[J]. Vadose Zone Journal, 2019, 18(1): 1-14.
    [24]
    HOHMANN M. Soil freezing—the concept of soil water potential. State of the art[J]. Cold Regions Science and Technology, 1997, 25(2): 101-110. doi: 10.1016/S0165-232X(96)00019-5
    [25]
    THOMAS H R, CLEALL P, LI Y C, et al. Modelling of cryogenic processes in permafrost and seasonally frozen soils[J]. Géotechnique, 2009, 59(3): 173-184. doi: 10.1680/geot.2009.59.3.173
    [26]
    HAN Y, WANG Q, KONG Y Y, et al. Experiments on the initial freezing point of dispersive saline soil[J]. CATENA, 2018, 171: 681-690. doi: 10.1016/j.catena.2018.07.046
    [27]
    HENRY K S. A review of the thermodynamics of frost heave[R]. Technical Report ERDC/CRREL TR-00-16, 2000.
    [28]
    VASSEUR G, DJERAN-MAIGRE I, GRUNBERGER D, et al. Evolution of structural and physical parameters of clays during experimental compaction[J]. Marine and Petroleum Geology, 1995, 12(8): 941-954. doi: 10.1016/0264-8172(95)98857-2
    [29]
    戴张俊, 陈善雄, 罗红明, 等. 南水北调中线膨胀土/岩微观特征及其性质研究[J]. 岩土工程学报, 2013, 35(5): 948-954. http://cge.nhri.cn/article/id/15060

    DAI Zhangjun, CHEN Shanxiong, LUO Hongming, et al. Microstructure and characteristics of expansive soil and rock of middle route of South-to-North Water Diversion Project[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 948-954. (in Chinese) http://cge.nhri.cn/article/id/15060

Catalog

    Article views (196) PDF downloads (40) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return