• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HUA Longfei, WAN Yong, CHEN Zhixiang, LI Shunqun. Liquid-retention characteristics of diesel-contaminated soil considering water-diesel separation[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(5): 995-1003. DOI: 10.11779/CJGE20231268
Citation: HUA Longfei, WAN Yong, CHEN Zhixiang, LI Shunqun. Liquid-retention characteristics of diesel-contaminated soil considering water-diesel separation[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(5): 995-1003. DOI: 10.11779/CJGE20231268

Liquid-retention characteristics of diesel-contaminated soil considering water-diesel separation

More Information
  • Received Date: December 25, 2023
  • Available Online: June 18, 2024
  • To investigate the liquid-retention characteristics of soils with immiscible liquid of water and diesel, and analysis the distribution and evolution of pore water-diesel during the dehumidification process, a centrifuge method is used to test the liquid-retention characteristics of soils with different water-diesel contents. Additionally, the modified interface of the centrifuge cup and the volumetric measurement method are used to achieve the micro-loss collection and quantitative separation of the soil and diesel. On this basis, the relationship among centrifugal equivalent suction, water content, diesel content and total liquid content is respectively analyzed considering the soil deformation during the centrifugal process. Furthermore, the influence mechanism of the diesel content on the liquid-retention characteristics of soils and the pore evolution is analyzed. The results show that the liquid-retention characteristics of the contaminated soil are related to its diesel content. The air entry value and residual liquid content of the soil decrease as the increase of the diesel content, indicating a weakening of the liquid retention capability of the soil. The soil with high diesel content undergoes small shrinkage deformation and large pore content under the same centrifugal loads. The diesel is preferred to fill larger pores due to its high viscosity and low surface tension, while the water is preferred to exist in smaller pores due to its strong polarity and wettability. The water-diesel ratio in the pores trends to reach a constant range as the matric suction increases.
  • [1]
    AWAD A M, SHAIKH S M R, JALAB R, et al. Adsorption of organic pollutants by natural and modified clays: a comprehensive review[J]. Separation and Purification Technology, 2019, 228: 115719. doi: 10.1016/j.seppur.2019.115719
    [2]
    SHANG Z J, XU P, KE Z Y, et al. Diesel removal and recovery from heavily diesel-contaminated soil based on three-liquid-phase equilibria of diesel + 2-butyloxyethanol + water[J]. Journal of Hazardous Materials, 2023, 442: 130061. doi: 10.1016/j.jhazmat.2022.130061
    [3]
    IZDEBSKA-MUCHA D, TRZCIŃSKI J. Clay soil behaviour due to long-term contamination by liquid petroleum fuels: microstructure and geotechnical properties[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(4): 1-14.
    [4]
    蔡国庆, 王亚南, 周安楠, 等. 考虑微观孔隙结构的非饱和土水-力耦合本构模型[J]. 岩土工程学报, 2018, 40(4): 618-624. doi: 10.11779/CJGE201804005

    CAI Guoqing, WANG Yanan, ZHOU Annan, et al. A microstructure-dependent hydro-mechanical coupled constitutive model for unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 618-624. (in Chinese) doi: 10.11779/CJGE201804005
    [5]
    贺泳超, 陈秋南, 曾奥, 等. 受柴油污染的高液限红黏土抗剪强度研究[J]. 铁道科学与工程学报, 2022, 19(3): 691-696.

    HE Yongchao, CHEN Qiunan, ZENG Ao, et al. Shear strength of high liquid limit red clay contaminated by diesel oil[J]. Journal of Railway Science and Engineering, 2022, 19(3): 691-696. (in Chinese)
    [6]
    李晓杰, 张文文, 马传博, 等. 热强化气相抽提修复东北地区苯污染土壤研究[J]. 环境工程, 2022, 40(4): 134-139, 187.

    LI Xiaojie, ZHANG Wenwen, MA Chuanbo, et al. Removal of benzene from clay soil in Northeastern China by thermal enhanced soil vapor extraction[J]. Environmental Engineering, 2022, 40(4): 134-139, 187. (in Chinese)
    [7]
    于颖, 邵子婴, 刘靓, 等. 热强化气相抽提法修复半挥发性石油烃污染土壤的影响因素[J]. 环境工程学报, 2017, 11(4): 2522-2527.

    YU Ying, SHAO Ziying, LIU (Jing| Liang), et al. Factors influencing remediation of semi-volatile petroleum hydrocarbon-contaminated soil by thermally enhanced soil vapor extraction[J]. Chinese Journal of Environmental Engineering, 2017, 11(4): 2522-2527. (in Chinese)
    [8]
    李敏, 李辉, 于禾苗, 等. 石灰粉煤灰固化石油污染土的渗透特性及其工程再利用探讨[J]. 岩土力学, 2024, 45(1): 108-116.

    LI Min, LI Hui, YU Hemiao, et al. Discussion on permeability characteristics of lime and fly ash solidified oil-contaminated soil and its engineering reuse[J]. Rock and Soil Mechanics, 2024, 45(1): 108-116. (in Chinese)
    [9]
    栾茂田, 李顺群, 杨庆. 非饱和土的理论土-水特征曲线[J]. 岩土工程学报, 2005, 27(6): 611-615. http://cge.nhri.cn/article/id/11688

    LUAN Maotian, LI Shunqun, YANG Qing. Theoretical soil-water characteristic curve for unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(6): 611-615. (in Chinese) http://cge.nhri.cn/article/id/11688
    [10]
    栾茂田, 李顺群, 杨庆. 非饱和土的基质吸力和张力吸力[J]. 岩土工程学报, 2006, 28(7): 863-868. http://cge.nhri.cn/article/id/12114

    LUAN Maotian, LI Shunqun, YANG Qing. Matric suction and tension suction of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(7): 863-868. (in Chinese) http://cge.nhri.cn/article/id/12114
    [11]
    WEN T D, SHAO L T, GUO X X, et al. Experimental investigations of the soil water retention curve under multiple drying–wetting cycles[J]. Acta Geotechnica, 2020, 15(11): 3321-3326. doi: 10.1007/s11440-020-00964-2
    [12]
    WANG H M, NI W K, YUAN K Z, et al. Study on SWCC and PSD evolution of compacted loess before and after drying-wetting cycles[J]. Bulletin of Engineering Geology and the Environment, 2023, 82(5): 180. doi: 10.1007/s10064-023-03218-z
    [13]
    桑进, 刘文化, 张洪勇, 等. 全吸力范围内固化土的土–水特征曲线试验研究[J]. 岩石力学与工程学报, 2023. 42(增刊 1): 3843-3850.

    SANG Jin, LIU Wenhua, ZHANG Hongyong, et al. Experimental study of soil-water characteristic curve of solidified soil in full suction range[J]. Chinese Journal of Rock Mechanics and Engineering, 2023. 42(S1): 3843-3850. (in Chinese)
    [14]
    LI L C, LI X A, LEI H N. On the characterization of the shrinkage behavior and soil-water retention curves of four soils using centrifugation and their relation to the soil structure[J]. Arabian Journal of Geosciences, 2020, 13(23): 1259. doi: 10.1007/s12517-020-06273-y
    [15]
    颜荣涛, 徐玉博, 颜梦秋. 含水合物土体的土水特征曲线及渗透系数[J]. 岩土工程学报, 2023, 45(5): 921-930. doi: 10.11779/CJGE20220123

    YAN Rongtao, XU Yubo, YAN Mengqiu. Soil-water characteristic curve and permeability of hydrate-bearing soils[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 921-930. (in Chinese) doi: 10.11779/CJGE20220123
    [16]
    牛庚, 邵龙潭, 孙德安, 等. 土-水特征曲线测量过程中孔隙分布的演化规律探讨[J]. 岩土力学, 2020, 41(4): 1195-1202.

    NIU Geng, SHAO Longtan, SUN Dean, et al. Evolution law of pore-size distribution in soil-water retention test[J]. Rock and Soil Mechanics, 2020, 41(4): 1195-1202. (in Chinese)
    [17]
    杨华, 石辉, 李卓, 等. 石油烃污染对土壤持水特征及水分有效性的影响[J]. 水土保持研究, 2022, 29(3): 142-146.

    YANG Hua, SHI Hui, LI Zhuo, et al. Influence of petroleum hydrocarbon pollution on soil water holding characteristics and soil water availability[J]. Research of Soil and Water Conservation, 2022, 29(3): 142-146. (in Chinese)
    [18]
    魏样, 王益权, 韩霁昌, 等. 石油污染对土壤持水能力及供水强度的影响[J]. 水土保持通报, 2019, 39(6): 21-26.

    WEI Yang, WANG Yiquan, HAN Jichang, et al. Effects of oil pollution on soil water-holding capacity and water supply intensity[J]. Bulletin of Soil and Water Conservation, 2019, 39(6): 21-26. (in Chinese)
    [19]
    魏样, 蔡苗, 朱坤, 等. 石油污染对土壤水分特性的影响[J]. 地球环境学报, 2018, 9(3): 266-272.

    WEI Yang, CAI Miao, ZHU Kun, et al. Effects of oil pollution on soil moisture[J]. Journal of Earth Environment, 2018, 9(3): 266-272. (in Chinese)
    [20]
    HEWELKE E, GOZDOWSKI D. Hydrophysical properties of sandy clay contaminated by petroleum hydrocarbon[J]. Environmental Science and Pollution Research, 2020, 27(9): 9697-9706. doi: 10.1007/s11356-020-07627-5
    [21]
    ZHANG M, GUO P H, WU B, et al. Change in soil ion content and soil water-holding capacity during electro-bioremediation of petroleum contaminated saline soil[J]. Journal of Hazardous Materials, 2020, 387: 122003. doi: 10.1016/j.jhazmat.2019.122003
    [22]
    VERO S E, HEALY M G, HENRY T, et al. A methodological framework to determine optimum durations for the construction of soil water characteristic curves using centrifugation[J]. Irish Journal of Agricultural and Food Research, 2016, 55(2): 91-99. doi: 10.1515/ijafr-2016-0009
    [23]
    孙德安, 刘文捷, 吕海波. 桂林红黏土的土-水特征曲线[J]. 岩土力学, 2014, 35(12): 3345-3351.

    SUN De'an, LIU Wenjie, LÜ Haibo. Soil-water characteristic curve of Guilin lateritic clay[J]. Rock and Soil Mechanics, 2014, 35(12): 3345-3351. (in Chinese)
    [24]
    VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898. doi: 10.2136/sssaj1980.03615995004400050002x
    [25]
    NING Lu, WILLIAM J Likos, 韦昌富, 等. 非饱和土力学[M]. 北京: 高等教育出版社, 2012.

    NING Lu, WILLIAM J Likos, WEI Changfu, et al. Unsaturated Soil Mechanics[M]. Beijing: Higher Education Press, 2012. (in Chinese)
    [26]
    毛柏杨, 刘松玉, 刘志彬. 柴油污染粉土水油分布的核磁共振试验研究[J]. 天津大学学报(自然科学与工程技术版), 2020, 53(2): 122-128.

    MAO Boyang, LIU Songyu, LIU Zhibin. Experimental nuclear magnetic resonance study of the water and oil distributions in diesel contaminated silt[J]. Journal of Tianjin University (Science and Technology), 2020, 53(2): 122-128. (in Chinese)
    [27]
    LIU X M, FENG B, TIAN R, et al. Electrical double layer interactions between soil colloidal particles: polarization of water molecule and counterion[J]. Geoderma, 2020, 380: 114693. doi: 10.1016/j.geoderma.2020.114693

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return