• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Dongfeng, CHENG Wenchieh, WEN Shaojie, HU Wenle. Investigating adsorption properties of Pb(II) of biochar-amended loess using macroscopic and microscopic methods[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(5): 977-986. DOI: 10.11779/CJGE20231263
Citation: LI Dongfeng, CHENG Wenchieh, WEN Shaojie, HU Wenle. Investigating adsorption properties of Pb(II) of biochar-amended loess using macroscopic and microscopic methods[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(5): 977-986. DOI: 10.11779/CJGE20231263

Investigating adsorption properties of Pb(II) of biochar-amended loess using macroscopic and microscopic methods

More Information
  • Received Date: December 24, 2023
  • Available Online: June 12, 2024
  • Landfill leachate contains many heavy metal ions, and under the long-term seepage of leachate, the capability of landfill liners to adsorb and retain heavy metals is gradually degraded due to their deterioration problems. To improve the long-term adsorption and retention capacity of the liner materials for heavy metals, in this study, biochar is added to loess, and Pb(NO3)2 is used as a pollution source to study the adsorption and retention capacity of the biochar-amended loess for Pb2+ through the seepage tests. The changes in mineral composition and functional groups before and after adsorption of Pb2+ on the biochar-amended loess are elucidated through the XRD and FTIR microscopic tests. The results indicate that the adsorption of Pb2+ of the loess is mainly through the interfacial precipitation of calcite minerals, resulting in the obligatory adsorption of cerussite and quartz minerals. The SEM test results show that the generation of cerussite attached to the surface of loess particles prevents the adsorption of Pb2+ on the loess, which leads to the removal efficiency of Pb2+ on the loess specimens at the late stage of the seepage tests is only 45%. The FTIR tests detect many oxygen-containing functional groups in the biochar-amended loess specimens, which provides evidence for the adsorption of Pb2+ by functional groups through complexation. The XRD tests confirm the predominance of phosphate minerals on the surface of biochar for the adsorption of Pb2+ through interfacial precipitation. The liner materials of the biochar-amended loess relieve the depletion of calcite minerals in the loess by preferential adsorption of Pb2+ through oxygen-containing functional groups and phosphate minerals, which prolongs the Pb2+ adsorption time, resulting in an increase of removal efficiency of Pb2+ to 85% at the late stage of the seepage tests.
  • [1]
    张金利, 张林林. 重金属Pb(Ⅱ)在黏土上吸附特性研究[J]. 岩土工程学报, 2012, 34(9): 1584-1589. http://cge.nhri.cn/article/id/14682

    ZHANG Jinli, ZHANG Linlin. Adsorption behaviors of heavy metal Pb(Ⅱ) on clay[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1584-1589. (in Chinese) http://cge.nhri.cn/article/id/14682
    [2]
    国家统计局, 生态环境部. 中国环境统计年鉴-2021[M]. 北京: 中国统计出版社, 2021.

    National Bureau of Statistics, Ministry of Ecology and Environment. China Statistical Yearbook on Environment[M]. Beijing: China Statistics Press, 2021. (in Chinese)
    [3]
    韩智勇, 许模, 刘国, 等. 生活垃圾填埋场地下水污染物识别与质量评价[J]. 中国环境科学, 2015, 35(9): 2843-2852. doi: 10.3969/j.issn.1000-6923.2015.09.042

    HAN Zhiyong, XU Mo, LIU Guo, et al. Pollutant identification and quality assessment of groundwater near municipal solid waste landfills in China[J]. China Environmental Science, 2015, 35(9): 2843-2852. (in Chinese) doi: 10.3969/j.issn.1000-6923.2015.09.042
    [4]
    胡馨然, 杨斌, 韩智勇, 等. 中国正规、非正规生活垃圾填埋场地下水中典型污染指标特性比较分析[J]. 环境科学学报, 2019, 39(9): 3025-3038.

    HU Xinran, YANG Bin, HAN Zhiyong, et al. Comparison of the characteristics of typical pollutants in the groundwater between sanitary and non-sanitary landfills in China[J]. Acta Scientiae Circumstantiae, 2019, 39(9): 3025-3038. (in Chinese)
    [5]
    TRABELSI I, SELLAMI I, DHIFALLAH T, et al. Coupling of anoxic and aerobic biological treatment of landfill leachate[J]. Desalination, 2009, 246(1/2/3): 506-513.
    [6]
    徐颖, 马艺铭, 张溪, 等. 某生活垃圾填埋场周边地下水饮水途径健康风险评价[J]. 生态环境学报, 2021, 30(3): 558-568.

    XU Ying, MA Yiming, ZHANG Xi, et al. Health risk assessment of groundwater drinking pathway around A municipal solid waste landfill[J]. Ecology and Environmental Sciences, 2021, 30(3): 558-568. (in Chinese)
    [7]
    SRIVASTAVA V C, MALL I D, MISHRA I M. Equilibrium modelling of single and binary adsorption of cadmium and nickel onto bagasse fly ash[J]. Chemical Engineering Journal, 2006, 117(1): 79-91. doi: 10.1016/j.cej.2005.11.021
    [8]
    GHASSABZADEH H, TORAB-MOSTAEDI M, MOHADDESPOUR A, et al. Characterizations of Co (II) and Pb (II) removal process from aqueous solutions using expanded perlite[J]. Desalination, 2010, 261(1/2): 73-79.
    [9]
    ZHANG C T, ZHANG Z M, ZHANG L J, et al. Evolution of the functionalities and structures of biochar in pyrolysis of poplar in a wide temperature range[J]. Bioresource Technology, 2020, 304: 123002. doi: 10.1016/j.biortech.2020.123002
    [10]
    KOMKIENE J, BALTRENAITE E. Biochar as adsorbent for removal of heavy metal ions[Cadmium(II), Copper(II), Lead(II), Zinc(II)] from aqueous phase[J]. International Journal of Environmental Science and Technology, 2016, 13(2): 471-482. doi: 10.1007/s13762-015-0873-3
    [11]
    GHOLIZADEH M, HU X. Removal of heavy metals from soil with biochar composite: a critical review of the mechanism[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 105830. doi: 10.1016/j.jece.2021.105830
    [12]
    土的工程分类标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.

    Standard for Engineering Classification of Soil: GB/T 50123—2019[S]. Beijing: China Planning Press, (in Chinese)
    [13]
    沈胜强. 土-聚合物改良膨润土竖向屏障对重金属污染物阻隔性能的研究[D]. 南京: 东南大学, 2019.

    SHEN Shengqiang. Study on the Barrier Performance of Soil-Polymer Modified Bentonite Vertical Barrier to Heavy Metal Pollutants[D]. Nanjing: Southeast University, 2019. (in Chinese)
    [14]
    DU Y J, FAN R D, REDDY K R, et al. Impacts of presence of lead contamination in clayey soil-calcium bentonite cutoff wall backfills[J]. Applied Clay Science, 2015, 108: 111-122. doi: 10.1016/j.clay.2015.02.006
    [15]
    ZHAO B W, XU R Z, MA F F, et al. Effects of biochars derived from chicken manure and rape straw on speciation and phytoavailability of Cd to maize in artificially contaminated loess soil[J]. Journal of Environmental Management, 2016, 184: 569-574. doi: 10.1016/j.jenvman.2016.10.020
    [16]
    王璐. 生物炭的制备、表征及其对黄土吸附Cd(Ⅱ)Zn(Ⅱ)的影响及机制[D]. 兰州: 兰州交通大学, 2016.

    WANG Lu. Preparation and Characterization of Biochar and its Effect on Adsorption of CD (Ⅱ) and Zn (Ⅱ) on Loess and its Mechanism[D]. Lanzhou: Lanzhou Jiatong University, 2016. (in Chinese)
    [17]
    GILES C H, SMITH D, HUITSON A. A general treatment and classification of the solute adsorption isotherm. I. Theoretical[J]. Journal of Colloid and Interface Science, 1974, 47(3): 755-765. doi: 10.1016/0021-9797(74)90252-5
    [18]
    XU P P, ZHANG Q Y, QIAN H, et al. Exploring the geochemical mechanism for the saturated permeability change of remolded loess[J]. Engineering Geology, 2021, 284: 105927. doi: 10.1016/j.enggeo.2020.105927
    [19]
    WANG Y Z, CHEN Y M, XIE H J, et al. Lead adsorption and transport in loess-amended soil-bentonite cut-off wall[J]. Engineering Geology, 2016, 215: 69-80. doi: 10.1016/j.enggeo.2016.11.002
    [20]
    LI Z Z, TANG X W, CHEN Y M, et al. Sorption behavior and mechanism of Pb(II) on Chinese loess[J]. Journal of Environmental Engineering, 2009, 135(1): 58-67. doi: 10.1061/(ASCE)0733-9372(2009)135:1(58)
    [21]
    陈云敏, 王誉泽, 谢海建, 等. 黄土–粉土混合土对Pb(Ⅱ)的静平衡和动态吸附特性[J]. 岩土工程学报, 2014, 36(7): 1185-1194.

    CHEN Yunmin, WANG Yuze, XIE Haijian, et al. Adsorption characteristics of loess-modified natural silt towards Pb(II): equilibrium and kinetic tests[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1185-1194. (in Chinese)
    [22]
    MENG J, TAO M M, WANG L L, et al. Changes in heavy metal bioavailability and speciation from a Pb-Zn mining soil amended with biochars from co-pyrolysis of rice straw and swine manure[J]. Science of the Total Environment, 2018, 633: 300-307. doi: 10.1016/j.scitotenv.2018.03.199
    [23]
    GHOLIZADEH M, HU X. Removal of heavy metals from soil with biochar composite: a critical review of the mechanism[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 105830. doi: 10.1016/j.jece.2021.105830
    [24]
    王翔, 顾凯, 张玉萍, 等. 生物炭对不同土体干缩开裂特性的影响及其机理研究[J]. 岩土工程学报, 2023, 45(4): 876-882.

    WANG Xiang, GU Kai, ZHANG Yuping, et al. Effects of biochar on desiccation cracking characteristics of different soils and their mechanism[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 876-882. (in Chinese)
    [25]
    WANG L, WANG Y J, MA F, et al. Mechanisms and reutilization of modified biochar used for removal of heavy metals from wastewater: a review[J]. Science of the Total Environment, 2019, 668: 1298-1309. doi: 10.1016/j.scitotenv.2019.03.011
    [26]
    LI Y L, YU H, LIU L N, et al. Application of co-pyrolysis biochar for the adsorption and immobilization of heavy metals in contaminated environmental substrates[J]. Journal of Hazardous Materials, 2021, 420: 126655. doi: 10.1016/j.jhazmat.2021.126655
    [27]
    AHMAD Z, GAO B, MOSA A, et al. Removal of Cu(II), Cd(II) and Pb(II) ions from aqueous solutions by biochars derived from potassium-rich biomass[J]. Journal of Cleaner Production, 2018, 180: 437-449. doi: 10.1016/j.jclepro.2018.01.133
    [28]
    HE L Z, ZHONG H, LIU G X, et al. Remediation of heavy metal contaminated soils by biochar: mechanisms, potential risks and applications in China[J]. Environmental Pollution, 2019, 252: 846-855. doi: 10.1016/j.envpol.2019.05.151
    [29]
    吴宏海, 吴大清, 彭金莲. 重金属离子与石英表面反应的实验研究[J]. 地球化学, 1998, 27(6): 523-531. doi: 10.3321/j.issn:0379-1726.1998.06.002

    WU Honghai, WU Daqing, PENG Jinlian. Experimental study on surface reactions of heavy metal ions with quartz[J]. Geochimica, 1998, 27(6): 523-531. (in Chinese) doi: 10.3321/j.issn:0379-1726.1998.06.002
    [30]
    姚倩婷. 磷酸钙材料的电子结构、生物活性及荧光特性研究[D]. 苏州: 苏州大学, 2020.

    YAO Qianting. Study on Electronic Structure, Biological Activity and Fluorescence Characteristics of Calcium Phosphate Materials[D]. Suzhou: Soochow University, 2020. (in Chinese)
    [31]
    陈颢明, 胡亦舒, 李真. 溶磷微生物改性生物炭吸附重金属的机理研究[J]. 中国环境科学, 2021, 41(2): 684-692. doi: 10.3969/j.issn.1000-6923.2021.02.022

    CHEN Haoming, HU Yishu, LI Zhen. Mechanism of heavy metal adsorption by phosphorus solubilising microorganism- modified biochar[J]. China Environmental Science, 2021, 41(2): 684-692. (in Chinese) doi: 10.3969/j.issn.1000-6923.2021.02.022
    [32]
    LI R H, LIANG W, WANG J J, et al. Facilitative capture of As(V), Pb(II) and methylene blue from aqueous solutions with MgO hybrid sponge-like carbonaceous composite derived from sugarcane leafy trash[J]. Journal of Environmental Management, 2018, 212: 77-87.
    [33]
    马锋锋, 赵保卫, 刁静茹. 小麦秸秆生物炭对水中Cd~(2+)的吸附特性研究[J]. 中国环境科学, 2017, 37(2): 551-559.

    MA Fengfeng, ZHAO Baowei, DIAO Jingru. Studies on the adsorption characteristics of wheat straw biochar on Cd~(2+) in water[J]. China Environmental Science, 2017, 37(2): 551-559. (in Chinese)).
    [34]
    LIU Z G, ZHANG F S. Removal of copper (II) and phenol from aqueous solution using porous carbons derived from hydrothermal chars[J]. Desalination, 2011, 267(1): 101-106. doi: 10.1016/j.desal.2010.09.013
    [35]
    YIN W Q, DAI D, HOU J H, et al. Hierarchical porous biochar-based functional materials derived from biowaste for Pb(II) removal[J]. Applied Surface Science, 2019, 465: 297-302. doi: 10.1016/j.apsusc.2018.09.010
    [36]
    THEO KLOPROGGE J. Infrared and Raman spectroscopy of minerals and inorganic materials[M]// Encyclopedia of Spectroscopy and Spectrometry. Amsterdam: Elsevier, 2017: 267-281.
    [37]
    HE L Z, ZHONG H, LIU G X, et al. Remediation of heavy metal contaminated soils by biochar: mechanisms, potential risks and applications in China[J]. Environmental Pollution, 2019, 252: 846-855. doi: 10.1016/j.envpol.2019.05.151
    [38]
    DAI Z M, ZHANG X J, TANG C, et al. Potential role of biochars in decreasing soil acidification: A critical review[J]. Science of the Total Environment, 2017, 581: 601-611.
    [39]
    MA L, XU R K, JIANG J. Adsorption and desorption of Cu(II) and Pb(II) in paddy soils cultivated for various years in the subtropical China[J]. Journal of Environmental Sciences, 2010, 22(5): 689-695. doi: 10.1016/S1001-0742(09)60164-9
    [40]
    WEN S J, CHENG W C, LI D F, et al. Immobilizing lead using loess and nanoscale zerovalent iron (nZVI)-amended loess: insights from macroscopic and microscopic tests[J]. Environmental Technology & Innovation, 2023, 31: 103228.
  • Related Articles

    [1]LIU Yun-fang, LIU Yuan-kun, XU Jing. Complex function method of stress back analysis for a non-circular underground opening[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1925-1930.
    [2]Reliability of underground caverns based on genetic algorithm and support vector machine[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7).
    [3]ZHOU Jiawen, XU Weiya, TONG Fuguo, CHU Weijiang, LIU Xingning. Back analysis for the diversion tunnel No.2 of Nuozhadu Hydropower Station by use of 3D nonlinear finite element method[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(10): 1527-1535.
    [4]QI Junxiu, WANG Lianjie, LIU Fengcheng, WANG Wei, DONG Cheng. Back analysis and prediction for displacement of surrounding rock around model tunnel of a powerstation[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(8): 1205-1210.
    [5]ZHAO Hongbo. Back analysis of intelligent displacement based on particle swarm optimization[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(11): 2035-2038.
    [6]XU Chuanhua, REN Qingwen, ZHENG Zhi, XIAO Dexu. Displacement back analysis of rock mechanic parameters of underground grotto of Suofengying Hydraulic Power Plant[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(11): 1981-1985.
    [7]LIU Kaiyun, QIAO Chunsheng, TENG Wenyan. Research on non-linear time sequence intelligent model construction and prediction of slope displacement by using support vector machine algorithm[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 57-61.
    [8]ZHANG Luqing, JIA Zhengxue. Inversion uniqueness of elastic displacement back-analysis for ground stress,elastic modulus and Poisson’s ratio[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(2): 172-177.
    [9]Deng Jianhui, Feng Dingxiang, Ge Xiurun, Gu Xianrong. Model for Back Analysis of Elastic Moduli from Measured Displacements in Cut Slopes and Its Optimization Method[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(3): 25-30.
    [10]Yang Linde, Zhu Hehua, He Yuren, Qu Jinming. Deformation Back Analysis of Test Tunnel of Tianhuangping Pumped Storage Project[J]. Chinese Journal of Geotechnical Engineering, 1992, 14(2): 37-43.

Catalog

    Article views (236) PDF downloads (48) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return