Citation: | LI Dongfeng, CHENG Wenchieh, WEN Shaojie, HU Wenle. Investigating adsorption properties of Pb(II) of biochar-amended loess using macroscopic and microscopic methods[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(5): 977-986. DOI: 10.11779/CJGE20231263 |
[1] |
张金利, 张林林. 重金属Pb(Ⅱ)在黏土上吸附特性研究[J]. 岩土工程学报, 2012, 34(9): 1584-1589. http://cge.nhri.cn/article/id/14682
ZHANG Jinli, ZHANG Linlin. Adsorption behaviors of heavy metal Pb(Ⅱ) on clay[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1584-1589. (in Chinese) http://cge.nhri.cn/article/id/14682
|
[2] |
国家统计局, 生态环境部. 中国环境统计年鉴-2021[M]. 北京: 中国统计出版社, 2021.
National Bureau of Statistics, Ministry of Ecology and Environment. China Statistical Yearbook on Environment[M]. Beijing: China Statistics Press, 2021. (in Chinese)
|
[3] |
韩智勇, 许模, 刘国, 等. 生活垃圾填埋场地下水污染物识别与质量评价[J]. 中国环境科学, 2015, 35(9): 2843-2852. doi: 10.3969/j.issn.1000-6923.2015.09.042
HAN Zhiyong, XU Mo, LIU Guo, et al. Pollutant identification and quality assessment of groundwater near municipal solid waste landfills in China[J]. China Environmental Science, 2015, 35(9): 2843-2852. (in Chinese) doi: 10.3969/j.issn.1000-6923.2015.09.042
|
[4] |
胡馨然, 杨斌, 韩智勇, 等. 中国正规、非正规生活垃圾填埋场地下水中典型污染指标特性比较分析[J]. 环境科学学报, 2019, 39(9): 3025-3038.
HU Xinran, YANG Bin, HAN Zhiyong, et al. Comparison of the characteristics of typical pollutants in the groundwater between sanitary and non-sanitary landfills in China[J]. Acta Scientiae Circumstantiae, 2019, 39(9): 3025-3038. (in Chinese)
|
[5] |
TRABELSI I, SELLAMI I, DHIFALLAH T, et al. Coupling of anoxic and aerobic biological treatment of landfill leachate[J]. Desalination, 2009, 246(1/2/3): 506-513.
|
[6] |
徐颖, 马艺铭, 张溪, 等. 某生活垃圾填埋场周边地下水饮水途径健康风险评价[J]. 生态环境学报, 2021, 30(3): 558-568.
XU Ying, MA Yiming, ZHANG Xi, et al. Health risk assessment of groundwater drinking pathway around A municipal solid waste landfill[J]. Ecology and Environmental Sciences, 2021, 30(3): 558-568. (in Chinese)
|
[7] |
SRIVASTAVA V C, MALL I D, MISHRA I M. Equilibrium modelling of single and binary adsorption of cadmium and nickel onto bagasse fly ash[J]. Chemical Engineering Journal, 2006, 117(1): 79-91. doi: 10.1016/j.cej.2005.11.021
|
[8] |
GHASSABZADEH H, TORAB-MOSTAEDI M, MOHADDESPOUR A, et al. Characterizations of Co (II) and Pb (II) removal process from aqueous solutions using expanded perlite[J]. Desalination, 2010, 261(1/2): 73-79.
|
[9] |
ZHANG C T, ZHANG Z M, ZHANG L J, et al. Evolution of the functionalities and structures of biochar in pyrolysis of poplar in a wide temperature range[J]. Bioresource Technology, 2020, 304: 123002. doi: 10.1016/j.biortech.2020.123002
|
[10] |
KOMKIENE J, BALTRENAITE E. Biochar as adsorbent for removal of heavy metal ions[Cadmium(II), Copper(II), Lead(II), Zinc(II)] from aqueous phase[J]. International Journal of Environmental Science and Technology, 2016, 13(2): 471-482. doi: 10.1007/s13762-015-0873-3
|
[11] |
GHOLIZADEH M, HU X. Removal of heavy metals from soil with biochar composite: a critical review of the mechanism[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 105830. doi: 10.1016/j.jece.2021.105830
|
[12] |
土的工程分类标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.
Standard for Engineering Classification of Soil: GB/T 50123—2019[S]. Beijing: China Planning Press, (in Chinese)
|
[13] |
沈胜强. 土-聚合物改良膨润土竖向屏障对重金属污染物阻隔性能的研究[D]. 南京: 东南大学, 2019.
SHEN Shengqiang. Study on the Barrier Performance of Soil-Polymer Modified Bentonite Vertical Barrier to Heavy Metal Pollutants[D]. Nanjing: Southeast University, 2019. (in Chinese)
|
[14] |
DU Y J, FAN R D, REDDY K R, et al. Impacts of presence of lead contamination in clayey soil-calcium bentonite cutoff wall backfills[J]. Applied Clay Science, 2015, 108: 111-122. doi: 10.1016/j.clay.2015.02.006
|
[15] |
ZHAO B W, XU R Z, MA F F, et al. Effects of biochars derived from chicken manure and rape straw on speciation and phytoavailability of Cd to maize in artificially contaminated loess soil[J]. Journal of Environmental Management, 2016, 184: 569-574. doi: 10.1016/j.jenvman.2016.10.020
|
[16] |
王璐. 生物炭的制备、表征及其对黄土吸附Cd(Ⅱ)Zn(Ⅱ)的影响及机制[D]. 兰州: 兰州交通大学, 2016.
WANG Lu. Preparation and Characterization of Biochar and its Effect on Adsorption of CD (Ⅱ) and Zn (Ⅱ) on Loess and its Mechanism[D]. Lanzhou: Lanzhou Jiatong University, 2016. (in Chinese)
|
[17] |
GILES C H, SMITH D, HUITSON A. A general treatment and classification of the solute adsorption isotherm. I. Theoretical[J]. Journal of Colloid and Interface Science, 1974, 47(3): 755-765. doi: 10.1016/0021-9797(74)90252-5
|
[18] |
XU P P, ZHANG Q Y, QIAN H, et al. Exploring the geochemical mechanism for the saturated permeability change of remolded loess[J]. Engineering Geology, 2021, 284: 105927. doi: 10.1016/j.enggeo.2020.105927
|
[19] |
WANG Y Z, CHEN Y M, XIE H J, et al. Lead adsorption and transport in loess-amended soil-bentonite cut-off wall[J]. Engineering Geology, 2016, 215: 69-80. doi: 10.1016/j.enggeo.2016.11.002
|
[20] |
LI Z Z, TANG X W, CHEN Y M, et al. Sorption behavior and mechanism of Pb(II) on Chinese loess[J]. Journal of Environmental Engineering, 2009, 135(1): 58-67. doi: 10.1061/(ASCE)0733-9372(2009)135:1(58)
|
[21] |
陈云敏, 王誉泽, 谢海建, 等. 黄土–粉土混合土对Pb(Ⅱ)的静平衡和动态吸附特性[J]. 岩土工程学报, 2014, 36(7): 1185-1194.
CHEN Yunmin, WANG Yuze, XIE Haijian, et al. Adsorption characteristics of loess-modified natural silt towards Pb(II): equilibrium and kinetic tests[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1185-1194. (in Chinese)
|
[22] |
MENG J, TAO M M, WANG L L, et al. Changes in heavy metal bioavailability and speciation from a Pb-Zn mining soil amended with biochars from co-pyrolysis of rice straw and swine manure[J]. Science of the Total Environment, 2018, 633: 300-307. doi: 10.1016/j.scitotenv.2018.03.199
|
[23] |
GHOLIZADEH M, HU X. Removal of heavy metals from soil with biochar composite: a critical review of the mechanism[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 105830. doi: 10.1016/j.jece.2021.105830
|
[24] |
王翔, 顾凯, 张玉萍, 等. 生物炭对不同土体干缩开裂特性的影响及其机理研究[J]. 岩土工程学报, 2023, 45(4): 876-882.
WANG Xiang, GU Kai, ZHANG Yuping, et al. Effects of biochar on desiccation cracking characteristics of different soils and their mechanism[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 876-882. (in Chinese)
|
[25] |
WANG L, WANG Y J, MA F, et al. Mechanisms and reutilization of modified biochar used for removal of heavy metals from wastewater: a review[J]. Science of the Total Environment, 2019, 668: 1298-1309. doi: 10.1016/j.scitotenv.2019.03.011
|
[26] |
LI Y L, YU H, LIU L N, et al. Application of co-pyrolysis biochar for the adsorption and immobilization of heavy metals in contaminated environmental substrates[J]. Journal of Hazardous Materials, 2021, 420: 126655. doi: 10.1016/j.jhazmat.2021.126655
|
[27] |
AHMAD Z, GAO B, MOSA A, et al. Removal of Cu(II), Cd(II) and Pb(II) ions from aqueous solutions by biochars derived from potassium-rich biomass[J]. Journal of Cleaner Production, 2018, 180: 437-449. doi: 10.1016/j.jclepro.2018.01.133
|
[28] |
HE L Z, ZHONG H, LIU G X, et al. Remediation of heavy metal contaminated soils by biochar: mechanisms, potential risks and applications in China[J]. Environmental Pollution, 2019, 252: 846-855. doi: 10.1016/j.envpol.2019.05.151
|
[29] |
吴宏海, 吴大清, 彭金莲. 重金属离子与石英表面反应的实验研究[J]. 地球化学, 1998, 27(6): 523-531. doi: 10.3321/j.issn:0379-1726.1998.06.002
WU Honghai, WU Daqing, PENG Jinlian. Experimental study on surface reactions of heavy metal ions with quartz[J]. Geochimica, 1998, 27(6): 523-531. (in Chinese) doi: 10.3321/j.issn:0379-1726.1998.06.002
|
[30] |
姚倩婷. 磷酸钙材料的电子结构、生物活性及荧光特性研究[D]. 苏州: 苏州大学, 2020.
YAO Qianting. Study on Electronic Structure, Biological Activity and Fluorescence Characteristics of Calcium Phosphate Materials[D]. Suzhou: Soochow University, 2020. (in Chinese)
|
[31] |
陈颢明, 胡亦舒, 李真. 溶磷微生物改性生物炭吸附重金属的机理研究[J]. 中国环境科学, 2021, 41(2): 684-692. doi: 10.3969/j.issn.1000-6923.2021.02.022
CHEN Haoming, HU Yishu, LI Zhen. Mechanism of heavy metal adsorption by phosphorus solubilising microorganism- modified biochar[J]. China Environmental Science, 2021, 41(2): 684-692. (in Chinese) doi: 10.3969/j.issn.1000-6923.2021.02.022
|
[32] |
LI R H, LIANG W, WANG J J, et al. Facilitative capture of As(V), Pb(II) and methylene blue from aqueous solutions with MgO hybrid sponge-like carbonaceous composite derived from sugarcane leafy trash[J]. Journal of Environmental Management, 2018, 212: 77-87.
|
[33] |
马锋锋, 赵保卫, 刁静茹. 小麦秸秆生物炭对水中Cd~(2+)的吸附特性研究[J]. 中国环境科学, 2017, 37(2): 551-559.
MA Fengfeng, ZHAO Baowei, DIAO Jingru. Studies on the adsorption characteristics of wheat straw biochar on Cd~(2+) in water[J]. China Environmental Science, 2017, 37(2): 551-559. (in Chinese)).
|
[34] |
LIU Z G, ZHANG F S. Removal of copper (II) and phenol from aqueous solution using porous carbons derived from hydrothermal chars[J]. Desalination, 2011, 267(1): 101-106. doi: 10.1016/j.desal.2010.09.013
|
[35] |
YIN W Q, DAI D, HOU J H, et al. Hierarchical porous biochar-based functional materials derived from biowaste for Pb(II) removal[J]. Applied Surface Science, 2019, 465: 297-302. doi: 10.1016/j.apsusc.2018.09.010
|
[36] |
THEO KLOPROGGE J. Infrared and Raman spectroscopy of minerals and inorganic materials[M]// Encyclopedia of Spectroscopy and Spectrometry. Amsterdam: Elsevier, 2017: 267-281.
|
[37] |
HE L Z, ZHONG H, LIU G X, et al. Remediation of heavy metal contaminated soils by biochar: mechanisms, potential risks and applications in China[J]. Environmental Pollution, 2019, 252: 846-855. doi: 10.1016/j.envpol.2019.05.151
|
[38] |
DAI Z M, ZHANG X J, TANG C, et al. Potential role of biochars in decreasing soil acidification: A critical review[J]. Science of the Total Environment, 2017, 581: 601-611.
|
[39] |
MA L, XU R K, JIANG J. Adsorption and desorption of Cu(II) and Pb(II) in paddy soils cultivated for various years in the subtropical China[J]. Journal of Environmental Sciences, 2010, 22(5): 689-695. doi: 10.1016/S1001-0742(09)60164-9
|
[40] |
WEN S J, CHENG W C, LI D F, et al. Immobilizing lead using loess and nanoscale zerovalent iron (nZVI)-amended loess: insights from macroscopic and microscopic tests[J]. Environmental Technology & Innovation, 2023, 31: 103228.
|
[1] | LIU Yun-fang, LIU Yuan-kun, XU Jing. Complex function method of stress back analysis for a non-circular underground opening[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1925-1930. |
[2] | Reliability of underground caverns based on genetic algorithm and support vector machine[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7). |
[3] | ZHOU Jiawen, XU Weiya, TONG Fuguo, CHU Weijiang, LIU Xingning. Back analysis for the diversion tunnel No.2 of Nuozhadu Hydropower Station by use of 3D nonlinear finite element method[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(10): 1527-1535. |
[4] | QI Junxiu, WANG Lianjie, LIU Fengcheng, WANG Wei, DONG Cheng. Back analysis and prediction for displacement of surrounding rock around model tunnel of a powerstation[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(8): 1205-1210. |
[5] | ZHAO Hongbo. Back analysis of intelligent displacement based on particle swarm optimization[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(11): 2035-2038. |
[6] | XU Chuanhua, REN Qingwen, ZHENG Zhi, XIAO Dexu. Displacement back analysis of rock mechanic parameters of underground grotto of Suofengying Hydraulic Power Plant[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(11): 1981-1985. |
[7] | LIU Kaiyun, QIAO Chunsheng, TENG Wenyan. Research on non-linear time sequence intelligent model construction and prediction of slope displacement by using support vector machine algorithm[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 57-61. |
[8] | ZHANG Luqing, JIA Zhengxue. Inversion uniqueness of elastic displacement back-analysis for ground stress,elastic modulus and Poisson’s ratio[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(2): 172-177. |
[9] | Deng Jianhui, Feng Dingxiang, Ge Xiurun, Gu Xianrong. Model for Back Analysis of Elastic Moduli from Measured Displacements in Cut Slopes and Its Optimization Method[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(3): 25-30. |
[10] | Yang Linde, Zhu Hehua, He Yuren, Qu Jinming. Deformation Back Analysis of Test Tunnel of Tianhuangping Pumped Storage Project[J]. Chinese Journal of Geotechnical Engineering, 1992, 14(2): 37-43. |