Loading [MathJax]/jax/output/SVG/jax.js
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WEI Renjie, TANG Tongzhi, PENG Jie, LI Liangliang, SHANG Zhiyang, JIANG Zhao. Experimental study on enhancing effect of FeCl3 on microbial mineralization of sandy soils[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(5): 948-957. DOI: 10.11779/CJGE20231225
Citation: WEI Renjie, TANG Tongzhi, PENG Jie, LI Liangliang, SHANG Zhiyang, JIANG Zhao. Experimental study on enhancing effect of FeCl3 on microbial mineralization of sandy soils[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(5): 948-957. DOI: 10.11779/CJGE20231225

Experimental study on enhancing effect of FeCl3 on microbial mineralization of sandy soils

More Information
  • Received Date: December 13, 2023
  • Available Online: October 11, 2024
  • The microbially induced calcium carbonate precipitation (MICP) is a promising technique for soil improvement. However, the disadvantage of the MICP-based method for soil treatment is that the intended effect of improvement can only be achieved by multiple treatments of the cementing solution. To enhance the efficiency of soil treatment by microbial mineralization, the solution tests and sand column tests are carried out by adding 1~30 mmol/L of FeCl3 in the cementing solution. The strengthening effect is evaluated by the calcium carbonate generation, unconfined compressive strength and coefficient of permeability. The results show that: (1) FeCl3 can change the morphology and size of the calcium carbonate produced by the MICP in the solution tests. (2) The addition of FeCl3 to the cementing solution can lead to a maximum unconfined compression strength of up to 1617.9 kPa in sand columns under five injections, which is 10.4 times higher than that of the conventional MICP-treated sand columns, and the coefficient of permeability is reduced by two orders of magnitude compared with that of the untreated sands. (3) FeCl3 does not increase the amount of the MICP calcium carbonate in sandy soils, but modifies the distribution pattern of the calcium carbonate in the pores of the sandy soils, thus increasing the strength of sandy soils and lowering the coefficient of permeability of sandy soils in co-operation with the MICP.
  • [1]
    何稼, 楚剑, 刘汉龙, 等. 微生物岩土技术的研究进展[J]. 岩土工程学报, 2016, 38(4): 643-653. doi: 10.11779/CJGE201604008

    HE Jia, CHU Jian, LIU Hanlong, et al. Research advances in biogeotechnologies[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 643-653. (in Chinese) doi: 10.11779/CJGE201604008
    [2]
    刘士雨, 俞缙, 曾伟龙, 等. 微生物诱导碳酸钙沉淀修复三合土裂缝效果研究[J]. 岩石力学与工程学报, 2020, 39(1): 191-204.

    LIU Shiyu, YU Jin, ZENG Weilong, et al. Repair effect of tabia cracks with microbially induced carbonate precipitation[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(1): 191-204. (in Chinese)
    [3]
    李驰, 王硕, 王燕星, 等. 沙漠微生物矿化覆膜及其稳定性的现场试验研究[J]. 岩土力学, 2019, 40(4): 1291-1298.

    LI Chi, WANG Shuo, WANG Yanxing, et al, Field experimental study on stability of bio-mineralization crust in the desert[J]. Rock and Soil Mechanics, 2019, 40(4): 1291-1298. (in Chinese)
    [4]
    谈叶飞, 郭张军, 陈鸿杰, 等. 微生物追踪固结技术在堤防防渗中的应用[J]. 河海大学学报(自然科学版), 2018, 46(6): 521-526.

    TAN Yefei, GUO Zhangjun, CHEN Hongjie, et al. Study on application of microbial tracing consolidation technology in the seepage prevention of earth bank[J]. Journal of Hohai University (Natural Sciences), 2018, 46(6): 521-526. (in Chinese)
    [5]
    程晓辉, 麻强, 杨钻, 等. 微生物灌浆加固液化砂土地基的动力反应研究[J]. 岩土工程学报, 2013, 35(8): 1486-1495. http://cge.nhri.cn/article/id/15257

    CHENG Xiaohui, MA Qiang, YANG Zuan, et al. Dynamic response of liquefiable sand foundation improved by bio-grouting[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1486-1495. (in Chinese) http://cge.nhri.cn/article/id/15257
    [6]
    王绪民, 郭伟, 余飞, 等. 多浓度营养盐处理对微生物胶结砂土均匀性与强度的影响[J]. 土木建筑与环境工程, 2017, 39(3): 145-150.

    WANG Xumin, GUO Wei, YU Fei, et al. Effects of multi-nutrient treatment on the uniformity and strength of MICP-cemented sand[J]. Journal of Civil, 2017, 39 (3): 145-150. (in Chinese)
    [7]
    崔明娟, 郑俊杰, 赖汉江. 颗粒粒径对微生物固化砂土强度影响的试验研究[J]. 岩土力学, 2016, 37(增刊2): 397-402.

    CUI Mingjuan, ZHENG Junjie, LAI Hanjiang. Experimental study on the effect of particle size on the strength of microbial solidified sand[J]. Rock and Soil Mechanics, 2016, 37(S2): 397-402. (in Chinese)
    [8]
    PAN X H, CHU J, YANG Y, et al. A new biogrouting method for fine to coarse sand[J]. Acta Geotechnica, 2020, 15(1): 1-16. doi: 10.1007/s11440-019-00872-0
    [9]
    IVANOV V, CHU J. Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil insitu[J]. Reviews in Environmental Science and Bio/Technology, 2008, 7(2): 139-153. doi: 10.1007/s11157-007-9126-3
    [10]
    CUI M J, ZHENG J J, ZHANG R J, et al. Influence of cementation level on the strength behaviour of bio-cemented sand[J]. Acta Geotechnica, 2017, 12(5): 971-986. doi: 10.1007/s11440-017-0574-9
    [11]
    WHIFFIN V S, VAN PAASSEN L A, HARKES M P. Microbial carbonate precipitation as a soil improvement technique[J]. Geomicrobiology Journal, 2007, 24(5): 417-423. doi: 10.1080/01490450701436505
    [12]
    LAI H J, CUI M J, WU S F, et al. Retarding effect of concentration of cementation solution on biocementation of soil[J]. Acta Geotechnica, 2021, 16(5): 1457-1472. doi: 10.1007/s11440-021-01149-1
    [13]
    CHENG L, SHAHIN M A, CHU J. Soil bio-cementation using a new one-phase low-pH injection method[J]. Acta Geotechnica, 2019, 14(3): 615-626. doi: 10.1007/s11440-018-0738-2
    [14]
    XIAO Y, WANG Y, WANG S, et al. Homogeneity and mechanical behaviors of sands improved by a temperature-controlled one-phase MICP method[J]. Acta Geotechnica, 2021, 16(5): 1417-1427. doi: 10.1007/s11440-020-01122-4
    [15]
    MA G L, HE X, JIANG X, et al. Strength and permeability of bentonite-assisted biocemented coarse sand[J]. Canadian Geotechnical Journal, 2021, 58(7): 969-981. doi: 10.1139/cgj-2020-0045
    [16]
    WEI R J, PENG J, LI L L, et al. Accelerated reinforcement of calcareous sand via biomineralization with aluminum ion flocculant[J]. Applied Biochemistry and Biotechnology, 2023, 195(12): 7197-7213. doi: 10.1007/s12010-023-04429-6
    [17]
    赵天龙, 解光宁, 张晓霞, 等. 酸性土壤上植物应对铝胁迫的过程与机制[J]. 应用生态学报, 2013, 24(10): 3003-3011.

    ZHAO Tianlong, XIE Guangning, ZHANG Xiaoxia, et al. Process and mechanism of plants in overcoming acid soil aluminum stress[J]. Chinese Journal of Applied Ecology, 2013, 24(10): 3003-3011. (in Chinese)
    [18]
    周玲玲, 张永吉, 孙丽华, 等. 铁盐和铝盐混凝对水中天然有机物的去除特性研究[J]. 环境科学, 2008, 29(5): 1187-1191. doi: 10.3321/j.issn:0250-3301.2008.05.006

    ZHOU Lingling, ZHANG Yongji, SUN Lihua, et al. Characteristic of natural organic matter removal by ferric and aluminium coagulation[J]. Environmental Science, 2008, 29(5): 1187-1191. (in Chinese) doi: 10.3321/j.issn:0250-3301.2008.05.006
    [19]
    赵红芬, 周志鑫. 利用铝-有机质絮状物降低渗透系数的试验研究[J]. 岩土力学, 2020, 41(12): 3947-3956.

    ZHAO Hongfen, ZHOU Zhixin. Experimental study of hydraulic conductivity reduction induced by Al-OM flocs-clogging[J]. Rock and Soil Mechanics, 2020, 41(12): 3947-3956. (in Chinese)
    [20]
    卫仁杰, 彭劼, 陈泳, 等. MICP结合南海岛礁资源加固珊瑚砂的方法及效果研究[J]. 防灾减灾工程学报, 2023, 43(6): 1255-1265.

    WEI Renjie, PENG Jie, CHEN Yong, et al. Study on methods and effects of coral sand reinforcement by MICP combined with reef resources in South China Sea[J]. Journal of Disaster Prevention and Mitigation Engineering, 2023, 43(6): 1255-1265. (in Chinese)
    [21]
    车莹, 华蔓, 杨合雄, 等. 利用乙酸丁酯萃取提纯三氯化铁的研究[J]. 化工管理, 2023(31): 154-158.

    CHE Ying, HUA Man, YANG Hexiong, et al. Study on extraction and purification of ferric chloride by butyl acetate[J]. Chemical Engineering Management, 2023(31): 154-158. (in Chinese)
    [22]
    郝志刚, 时培祥, 吕永康. 三氯化铁改性活性炭(Fe3+-AC)对Cr(Ⅵ)的吸附研究[J]. 化工新型材料, 2023, 51(5): 306-309.

    HAO Zhigang, SHI Peixiang, LÜ Yongkang. Study on the adsorption of Cr(Ⅵ) on activated carbon modified with FeCl3 (Fe3+-AC)[J]. New Chemical Materials, 2023, 51(5): 306-309. (in Chinese)
    [23]
    邓天天, 李义连, 陈锴, 等. FeCl3絮凝除As效率影响因素的初步研究[J]. 环境化学, 2011, 30(2): 524-529.

    DENG Tiantian, LI Yilian, CHEN Kai, et al. Preliminary study on the arsenic removal efficiency by ferric chloride[J]. Environmental Chemistry, 2011, 30(2): 524-529. (in Chinese)
    [24]
    MORTENSEN B M, HABER M J, DEJONG J T, et al. Effects of environmental factors on microbial induced calcium carbonate precipitation[J]. Journal of Applied Microbiology, 2011, 111(2): 338-349. doi: 10.1111/j.1365-2672.2011.05065.x
    [25]
    彭劼, 何想, 刘志明, 等. 低温条件下微生物诱导碳酸钙沉积加固土体的试验研究[J]. 岩土工程学报, 2016, 38(10): 1769-1774. doi: 10.11779/CJGE201610004

    PENG Jie, HE Xiang, LIU Zhiming, et al. Experimental research on influence of low temperature on MICP-treated soil[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1769-1774. (in Chinese) doi: 10.11779/CJGE201610004
    [26]
    GRADDY C M R, GOMEZ M G, KLINE L M, et al. Diversity of Sporosarcina-like bacterial strains obtained from meter-scale augmented and stimulated biocementation experiments[J]. Environmental Science & Technology, 2018, 52(7): 3997-4005.
    [27]
    LAI Y M, YU J, LIU S Y, et al. Experimental study to improve the mechanical properties of iron tailings sand by using MICP at low pH[J]. Construction and Building Materials, 2021, 273: 121729. doi: 10.1016/j.conbuildmat.2020.121729
    [28]
    马莹, 何静, 马荣骏. 三价铁离子在酸性水溶液中的行为[J]. 湖南有色金属, 2005, 21(1): 36-39.

    MA Ying, HE Jing, MA Rongjun. Fe(Ⅲ) behaviores in acid solution[J]. Hunan Nonferrous Metals, 2005, 21(1): 36-39. (in Chinese)
    [29]
    吴文军, 韩召, 张福元, 等. 高纯纳米氧化铁的制备[J]. 中国粉体技术, 2024, 30(1): 56-65.

    WU Wenjun, HAN Zhao, ZHANG Fuyuan, et al. Preparation of high-purity nano iron oxide[J]. China Powder Science and Technology, 2024, 30(1): 56-65. (in Chinese)
    [30]
    尹黎阳, 唐朝生, 谢约翰, 等. 微生物矿化作用改善岩土材料性能的影响因素[J]. 岩土力学, 2019, 40(7): 2525-2546.

    YIN Liyang, TANG Chaosheng, XIE Yuehan, et al. Factors affecting improvement in engineering properties of geomaterials by microbial-induced calcite precipitation[J]. Rock and Soil Mechanics, 2019, 40(7): 2525-2546. (in Chinese)
    [31]
    AL-THAWADI S, CORD-RUWISCH R. Calcium carbonate crystals formation by ureolytic bacteria isolated from australian soil and sludge[J]. Journal of Advanced Science and Engineering Research, 2012, 2: 12-26.
    [32]
    KEYKHA H A, ASADI A, ZAREIAN M. Environmental factors affecting the compressive strength of microbiologically induced calcite precipitation-treated soil[J]. Geomicrobiology Journal, 2017, 34(10): 889-894. doi: 10.1080/01490451.2017.1291772
  • Cited by

    Periodical cited type(1)

    1. 李华章,覃泽华. 颗粒形状对粗粒土K_0压缩特性影响的离散元分析. 陕西地质. 2024(02): 107-113 .

    Other cited types(4)

Catalog

    Article views PDF downloads Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return